{"title":"On the effectiveness of a message-driven confidence-driven protocol for guarded software upgrading","authors":"A. Tai, K. Tso, L. Alkalai, S. Chau, W. Sanders","doi":"10.1109/IPDS.2000.839464","DOIUrl":null,"url":null,"abstract":"In order to accomplish dependable onboard evolution, we develop a methodology which is called \"guarded software upgrading\" (GSU). The core of the methodology is a low-cost error containment and recovery protocol that escorts an upgraded software component through onboard validation, and guarded operation, safeguarding mission functions. The message-driven confidence-driven (MDCD) nature of the protocol eliminates the need for costly process coordination or atomic action, yet guarantees that the system will reach a consistent global state upon the completion of the rollback or roll-forward actions carried out by individual processes during error recovery. To validate the ability of the MDCD protocol to enhance system reliability when a software component undergoes onboard upgrading in a realistic, non-ideal environment, we conduct a stochastic activity network model based analysis. The results confirm the effectiveness of the protocol as originally surmised. Moreover, the model-based analyse's provides useful insight about the system behavior resulting from the use of the protocol under various conditions in its execution environment, facilitating effective use of the protocol.","PeriodicalId":162523,"journal":{"name":"Proceedings IEEE International Computer Performance and Dependability Symposium. IPDS 2000","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Computer Performance and Dependability Symposium. IPDS 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDS.2000.839464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
In order to accomplish dependable onboard evolution, we develop a methodology which is called "guarded software upgrading" (GSU). The core of the methodology is a low-cost error containment and recovery protocol that escorts an upgraded software component through onboard validation, and guarded operation, safeguarding mission functions. The message-driven confidence-driven (MDCD) nature of the protocol eliminates the need for costly process coordination or atomic action, yet guarantees that the system will reach a consistent global state upon the completion of the rollback or roll-forward actions carried out by individual processes during error recovery. To validate the ability of the MDCD protocol to enhance system reliability when a software component undergoes onboard upgrading in a realistic, non-ideal environment, we conduct a stochastic activity network model based analysis. The results confirm the effectiveness of the protocol as originally surmised. Moreover, the model-based analyse's provides useful insight about the system behavior resulting from the use of the protocol under various conditions in its execution environment, facilitating effective use of the protocol.