Causal Discovery with Score Matching on Additive Models with Arbitrary Noise

CLEaR Pub Date : 2023-04-06 DOI:10.48550/arXiv.2304.03265
Francesco Montagna, Nicoletta Noceti, L. Rosasco, Kun Zhang, Francesco Locatello
{"title":"Causal Discovery with Score Matching on Additive Models with Arbitrary Noise","authors":"Francesco Montagna, Nicoletta Noceti, L. Rosasco, Kun Zhang, Francesco Locatello","doi":"10.48550/arXiv.2304.03265","DOIUrl":null,"url":null,"abstract":"Causal discovery methods are intrinsically constrained by the set of assumptions needed to ensure structure identifiability. Moreover additional restrictions are often imposed in order to simplify the inference task: this is the case for the Gaussian noise assumption on additive non-linear models, which is common to many causal discovery approaches. In this paper we show the shortcomings of inference under this hypothesis, analyzing the risk of edge inversion under violation of Gaussianity of the noise terms. Then, we propose a novel method for inferring the topological ordering of the variables in the causal graph, from data generated according to an additive non-linear model with a generic noise distribution. This leads to NoGAM (Not only Gaussian Additive noise Models), a causal discovery algorithm with a minimal set of assumptions and state of the art performance, experimentally benchmarked on synthetic data.","PeriodicalId":171742,"journal":{"name":"CLEaR","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLEaR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.03265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Causal discovery methods are intrinsically constrained by the set of assumptions needed to ensure structure identifiability. Moreover additional restrictions are often imposed in order to simplify the inference task: this is the case for the Gaussian noise assumption on additive non-linear models, which is common to many causal discovery approaches. In this paper we show the shortcomings of inference under this hypothesis, analyzing the risk of edge inversion under violation of Gaussianity of the noise terms. Then, we propose a novel method for inferring the topological ordering of the variables in the causal graph, from data generated according to an additive non-linear model with a generic noise distribution. This leads to NoGAM (Not only Gaussian Additive noise Models), a causal discovery algorithm with a minimal set of assumptions and state of the art performance, experimentally benchmarked on synthetic data.
基于分数匹配的任意噪声加性模型的因果发现
因果发现方法本质上受到确保结构可识别性所需的一组假设的约束。此外,为了简化推理任务,通常会施加额外的限制:这是对加性非线性模型的高斯噪声假设的情况,这在许多因果发现方法中很常见。在本文中,我们指出了在这种假设下的推断的缺点,分析了在违反噪声项的高斯性的情况下边缘反演的风险。然后,我们提出了一种新的方法来推断因果图中变量的拓扑顺序,该方法是根据具有一般噪声分布的加性非线性模型生成的数据。这导致了NoGAM(不仅是高斯加性噪声模型),这是一种因果发现算法,具有最小的假设集和最先进的性能,在合成数据上进行实验基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信