Solar Power Prediction in Different Forecasting Horizons Using Machine Learning and Time Series Techniques

Kesh Pun, Saurav M. S. Basnet, W. Jewell
{"title":"Solar Power Prediction in Different Forecasting Horizons Using Machine Learning and Time Series Techniques","authors":"Kesh Pun, Saurav M. S. Basnet, W. Jewell","doi":"10.1109/SusTech51236.2021.9467464","DOIUrl":null,"url":null,"abstract":"Solar power generation is highly intermittent, nonlinear, and variable in nature. The increase in penetration level of solar energy resources poses technical challenges. An accurate forecasting model is crucial to minimizing these technical issues. Therefore, choosing the right forecasting technique for the right forecasting horizon is vital. In this study, the performance analysis of machine learning and time series forecasting techniques for various forecasting horizons has been investigated. Its accuracy, root mean square error (RMSE), and mean absolute error (MAE) have been compared to other techniques.","PeriodicalId":127126,"journal":{"name":"2021 IEEE Conference on Technologies for Sustainability (SusTech)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Technologies for Sustainability (SusTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SusTech51236.2021.9467464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Solar power generation is highly intermittent, nonlinear, and variable in nature. The increase in penetration level of solar energy resources poses technical challenges. An accurate forecasting model is crucial to minimizing these technical issues. Therefore, choosing the right forecasting technique for the right forecasting horizon is vital. In this study, the performance analysis of machine learning and time series forecasting techniques for various forecasting horizons has been investigated. Its accuracy, root mean square error (RMSE), and mean absolute error (MAE) have been compared to other techniques.
利用机器学习和时间序列技术在不同预测视野中的太阳能预测
太阳能发电本质上是高度间歇性、非线性和可变的。太阳能资源渗透水平的提高带来了技术挑战。准确的预测模型对于最小化这些技术问题至关重要。因此,为正确的预测范围选择正确的预测技术是至关重要的。在本研究中,研究了机器学习和时间序列预测技术在不同预测视野下的性能分析。并将其精度、均方根误差(RMSE)和平均绝对误差(MAE)与其他技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信