Integrating visual ontologies and wavelets for image content retrieval

W. Mao, D. Bell
{"title":"Integrating visual ontologies and wavelets for image content retrieval","authors":"W. Mao, D. Bell","doi":"10.1109/DEXA.1998.707428","DOIUrl":null,"url":null,"abstract":"One of the challenging problems for image content retrieval is how to represent semantics of images. We have proposed a new representation for image contents using visual ontologies and wavelets. We will discuss how to represent the shape of objects/regions of interest, colour distribution and texture of the images integrating visual ontologies with wavelets. Our ideas are: (1) propose a set of meta ontologies and semantic descriptors (graphic and symbolic) for visual ontologies; (2) using visual ontologies and most significant coefficients of a 2D multiresolution wavelet transform to represent image contents. The visual ontologies are represented by a set of descriptors, relations, logic operators, and functions; (3) using a multiresolution wavelet transform to extract the colour and texture features of target images and map it into relevant visual ontologies. The query images can also be represented as visual ontologies or most significant coefficients of a 2-D multiresolution wavelet; (4) a spatial query can be integrated with other visual ontologies. The initial experiments have shown encouraging results.","PeriodicalId":194923,"journal":{"name":"Proceedings Ninth International Workshop on Database and Expert Systems Applications (Cat. No.98EX130)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth International Workshop on Database and Expert Systems Applications (Cat. No.98EX130)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.1998.707428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

One of the challenging problems for image content retrieval is how to represent semantics of images. We have proposed a new representation for image contents using visual ontologies and wavelets. We will discuss how to represent the shape of objects/regions of interest, colour distribution and texture of the images integrating visual ontologies with wavelets. Our ideas are: (1) propose a set of meta ontologies and semantic descriptors (graphic and symbolic) for visual ontologies; (2) using visual ontologies and most significant coefficients of a 2D multiresolution wavelet transform to represent image contents. The visual ontologies are represented by a set of descriptors, relations, logic operators, and functions; (3) using a multiresolution wavelet transform to extract the colour and texture features of target images and map it into relevant visual ontologies. The query images can also be represented as visual ontologies or most significant coefficients of a 2-D multiresolution wavelet; (4) a spatial query can be integrated with other visual ontologies. The initial experiments have shown encouraging results.
集成视觉本体和小波的图像内容检索
如何表示图像的语义是图像内容检索的难点之一。我们利用视觉本体和小波提出了一种新的图像内容表示方法。我们将讨论如何将视觉本体与小波相结合来表示感兴趣的物体/区域的形状、颜色分布和图像的纹理。我们的想法是:(1)为视觉本体提出一套元本体和语义描述符(图形和符号);(2)利用视觉本体和二维多分辨率小波变换的最显著系数来表示图像内容。可视化本体由一组描述符、关系、逻辑运算符和函数表示;(3)利用多分辨率小波变换提取目标图像的颜色和纹理特征,并映射到相应的视觉本体中。查询图像也可以表示为视觉本体或二维多分辨率小波的最显著系数;(4)空间查询可以与其他视觉本体集成。最初的实验显示了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信