On the coding of Jacobi's method of computing eigenvalues and eigenvectors of real, symmetric matrices

ACM '59 Pub Date : 1959-09-01 DOI:10.1145/612201.612241
F. J. Corbató
{"title":"On the coding of Jacobi's method of computing eigenvalues and eigenvectors of real, symmetric matrices","authors":"F. J. Corbató","doi":"10.1145/612201.612241","DOIUrl":null,"url":null,"abstract":"Jacobi~s method 1'2,3 consists of performing consecutive 2 by 2 rotations on a real, symmetric, matrix, H, with elements H(km), k gm, where the largest magnitudes off-diagonal element, H(iJ), is used as a \"pivot\". A rotation is defined as the following unitary transformation where the primes indicate the new elements. kJ ii JJ ij = H(km) for k and m ~ i or j : i~(k~) + ~R(kj) for k ~nd ~ ~ i or J = sH[ki) + cH(kJ) for ~ and m i or J : c z {H(il) + 2 tH(i~I + t ~lJJ ~ = e 2 ~(jj)-2 tH(i + t z li = 0 with the last equation leading to:1 s= tc A square matrix U, which is initially set to be a unit matrix, is also successively rotated into a unitary matrix of the eigenvectors by the transformations: U' = cU(kl) + sU(kJ) U,(kJ) =-sU(ki) + cU(kJ) for m / i or J It is important to note that the form of t is always numerically accurate and approaches zero as H'() iJ becomes small. In addition the forms of HI(il) and H'(JJ), which do 33-1","PeriodicalId":109454,"journal":{"name":"ACM '59","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1959-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '59","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/612201.612241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Jacobi~s method 1'2,3 consists of performing consecutive 2 by 2 rotations on a real, symmetric, matrix, H, with elements H(km), k gm, where the largest magnitudes off-diagonal element, H(iJ), is used as a "pivot". A rotation is defined as the following unitary transformation where the primes indicate the new elements. kJ ii JJ ij = H(km) for k and m ~ i or j : i~(k~) + ~R(kj) for k ~nd ~ ~ i or J = sH[ki) + cH(kJ) for ~ and m i or J : c z {H(il) + 2 tH(i~I + t ~lJJ ~ = e 2 ~(jj)-2 tH(i + t z li = 0 with the last equation leading to:1 s= tc A square matrix U, which is initially set to be a unit matrix, is also successively rotated into a unitary matrix of the eigenvectors by the transformations: U' = cU(kl) + sU(kJ) U,(kJ) =-sU(ki) + cU(kJ) for m / i or J It is important to note that the form of t is always numerically accurate and approaches zero as H'() iJ becomes small. In addition the forms of HI(il) and H'(JJ), which do 33-1
实对称矩阵计算特征值和特征向量的Jacobi方法的编码
Jacobi~s方法1’2,3包括在一个实的对称矩阵H上进行连续的2 × 2旋转,其中元素H(km), k gm,其中最大的非对角线元素H(iJ)被用作“枢轴”。旋转被定义为以下的酉变换,其中素数表示新的元素。kJ ii JJ ij = H(公里)k和m ~我和珍:我~ (k ~ + ~ R (kJ) k ~和~ ~我或j = sH (ki) + cH (kJ) ~和m i和j: c z {H (il) + 2 tH(我~ + t ~ lJJ ~ = e 2 ~ (JJ) 2 tH (i + t = 0 z李最后方程导致:1 s = tc方阵U,最初将一个单位矩阵,也先后旋转成一个酉矩阵特征向量的转换:U' = cU(kl) + sU(kJ) U,(kJ) =-sU(ki) + cU(kJ)对于m / i或J。重要的是要注意,t的形式总是在数值上准确,并且随着H'() iJ变小而趋于零。此外还有HI(il)和H'(JJ)的形式,它们做33-1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信