Dynamic signature for a closed-set identification based on nonlinear analysis

David Ahmedt-Aristizabal, E. Delgado-Trejos, J. Vargas-Bonilla, J. A. Jaramillo-Garzón
{"title":"Dynamic signature for a closed-set identification based on nonlinear analysis","authors":"David Ahmedt-Aristizabal, E. Delgado-Trejos, J. Vargas-Bonilla, J. A. Jaramillo-Garzón","doi":"10.1109/IJCB.2011.6117502","DOIUrl":null,"url":null,"abstract":"This paper presents a study of biometric identification using a methodology based on complexity measures. The identification system designed, implemented and evaluated uses nonlinear dynamic techniques such as Lempel-Ziv Complexity, the Largest Lyapunov Exponent, Hurst Exponent, Correlation Dimension, Shannon Entropy and Kolmogorov Entropy to characterize the process and capture the intrinsic dynamics of the user's signature. In the validation process 3 databases were used SVC, MCYT and our own (ITMMS-01) obtaining closed-set identification performances of 98.12%, 97.38% and 99.50% accordingly. Satisfactory results were achieved with a conventional linear classifier spending a minimum computational cost.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a study of biometric identification using a methodology based on complexity measures. The identification system designed, implemented and evaluated uses nonlinear dynamic techniques such as Lempel-Ziv Complexity, the Largest Lyapunov Exponent, Hurst Exponent, Correlation Dimension, Shannon Entropy and Kolmogorov Entropy to characterize the process and capture the intrinsic dynamics of the user's signature. In the validation process 3 databases were used SVC, MCYT and our own (ITMMS-01) obtaining closed-set identification performances of 98.12%, 97.38% and 99.50% accordingly. Satisfactory results were achieved with a conventional linear classifier spending a minimum computational cost.
基于非线性分析的闭集识别动态签名
本文介绍了一种基于复杂性度量的生物特征识别方法。设计、实现和评估的识别系统使用非线性动态技术,如Lempel-Ziv复杂度、最大Lyapunov指数、Hurst指数、相关维数、Shannon熵和Kolmogorov熵来表征用户签名的过程并捕获用户签名的内在动态。在验证过程中,使用了SVC、MCYT和我们自己的(ITMMS-01) 3个数据库,分别获得了98.12%、97.38%和99.50%的闭集识别性能。使用传统的线性分类器花费最小的计算成本获得了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信