Parallel radial basis function neural networks to solve the polynomials equations

A. Altaee, H. K. Hoomod, Khalid Ali Hussein
{"title":"Parallel radial basis function neural networks to solve the polynomials equations","authors":"A. Altaee, H. K. Hoomod, Khalid Ali Hussein","doi":"10.1109/AIC-MITCSA.2016.7759938","DOIUrl":null,"url":null,"abstract":"The root-finding problem is one of the most important computational problems and applications. In this paper we introduced the modify artificial neural network is represented depending on radial basis function networks which have been three layers: input layer, hidden layer and output layer, where the hidden layer based on Gaussian function, these neural network techniques are developed to obtain the real approximate roots of single nonlinear equation with high accurate ratio. This modify RBFNN was used to proposed parallel environment for several intervals to compute approximate real roots.","PeriodicalId":315179,"journal":{"name":"2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA)","volume":"391 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIC-MITCSA.2016.7759938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The root-finding problem is one of the most important computational problems and applications. In this paper we introduced the modify artificial neural network is represented depending on radial basis function networks which have been three layers: input layer, hidden layer and output layer, where the hidden layer based on Gaussian function, these neural network techniques are developed to obtain the real approximate roots of single nonlinear equation with high accurate ratio. This modify RBFNN was used to proposed parallel environment for several intervals to compute approximate real roots.
平行径向基函数神经网络求解多项式方程
寻根问题是最重要的计算问题和应用之一。本文介绍了一种基于径向基函数网络的改进人工神经网络,该网络有三层:输入层、隐藏层和输出层,其中隐藏层基于高斯函数,这些神经网络技术用于获得单个非线性方程的实数近似根,具有较高的准确率。将该改进RBFNN应用于多个区间的并行环境中,求解近似实数根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信