Improved Criminisi Algorithm Based on a New Priority Function with the Gray Entropy

Xiang-yan Xi, F. Wang, Yefei Liu
{"title":"Improved Criminisi Algorithm Based on a New Priority Function with the Gray Entropy","authors":"Xiang-yan Xi, F. Wang, Yefei Liu","doi":"10.1109/CIS.2013.52","DOIUrl":null,"url":null,"abstract":"In the image inpainting process, the data term of the Criminisi algorithm depends on the shape of the manually selected target region and the confidence drops to zero rapidly, resulting in in painting sequence deviation which finally influence the in paint effect. Then we introduce the entropy to improve the data term, in this way another priority function will be defined. Experiments confirm that the improved algorithm can eliminate the dependence on the shape of the target region and the confidence will not drop to zero rapidly again. Experiments show that the algorithm will repair the image with pure texture, strong edges and purely synthetic images better.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In the image inpainting process, the data term of the Criminisi algorithm depends on the shape of the manually selected target region and the confidence drops to zero rapidly, resulting in in painting sequence deviation which finally influence the in paint effect. Then we introduce the entropy to improve the data term, in this way another priority function will be defined. Experiments confirm that the improved algorithm can eliminate the dependence on the shape of the target region and the confidence will not drop to zero rapidly again. Experiments show that the algorithm will repair the image with pure texture, strong edges and purely synthetic images better.
基于新的灰色熵优先级函数的改进犯罪识别算法
在图像补绘过程中,Criminisi算法的数据项依赖于人工选择的目标区域的形状,置信度迅速降至零,导致补绘序列偏差,最终影响补绘效果。然后我们引入熵来改进数据项,这样就定义了另一个优先级函数。实验证明,改进后的算法能够消除对目标区域形状的依赖,置信度不会再次快速降为零。实验表明,该算法对纯纹理、强边缘和纯合成图像的修复效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信