Using Semantic Information to Improve Generalization of Reinforcement Learning Policies for Autonomous Driving

Florence Carton, David Filliat, Jaonary Rabarisoa, Q. Pham
{"title":"Using Semantic Information to Improve Generalization of Reinforcement Learning Policies for Autonomous Driving","authors":"Florence Carton, David Filliat, Jaonary Rabarisoa, Q. Pham","doi":"10.1109/WACVW52041.2021.00020","DOIUrl":null,"url":null,"abstract":"The problem of generalization of reinforcement learning policies to new environments is seldom addressed but essential in practical applications. We focus on this problem in an autonomous driving context using the CARLA simulator and first show that semantic information is the key to a good generalization for this task. We then explore and compare different ways to exploit semantic information at training time in order to improve generalization in an unseen environment without fine-tuning, showing that using semantic segmentation as an auxiliary task is the most efficient approach.","PeriodicalId":313062,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW52041.2021.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The problem of generalization of reinforcement learning policies to new environments is seldom addressed but essential in practical applications. We focus on this problem in an autonomous driving context using the CARLA simulator and first show that semantic information is the key to a good generalization for this task. We then explore and compare different ways to exploit semantic information at training time in order to improve generalization in an unseen environment without fine-tuning, showing that using semantic segmentation as an auxiliary task is the most efficient approach.
利用语义信息改进自动驾驶强化学习策略的泛化
强化学习策略在新环境中的泛化问题很少得到解决,但在实际应用中却是必不可少的。我们使用CARLA模拟器在自动驾驶环境中关注这个问题,并首先表明语义信息是该任务良好泛化的关键。然后,我们探索和比较了在训练时利用语义信息的不同方法,以便在不需要微调的情况下提高在未知环境中的泛化,表明使用语义分割作为辅助任务是最有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信