SuryaKiran at MEDIQA-Sum 2023: Leveraging LoRA for Clinical Dialogue Summarization

Kunal Suri, Prakhar Mishra, Saumajit Saha, Ashutosh Kumar Singh
{"title":"SuryaKiran at MEDIQA-Sum 2023: Leveraging LoRA for Clinical Dialogue Summarization","authors":"Kunal Suri, Prakhar Mishra, Saumajit Saha, Ashutosh Kumar Singh","doi":"10.48550/arXiv.2307.05162","DOIUrl":null,"url":null,"abstract":"Finetuning Large Language Models helps improve the results for domain-specific use cases. End-to-end finetuning of large language models is time and resource intensive and has high storage requirements to store the finetuned version of the large language model. Parameter Efficient Fine Tuning (PEFT) methods address the time and resource challenges by keeping the large language model as a fixed base and add additional layers, which the PEFT methods finetune. This paper demonstrates the evaluation results for one such PEFT method Low Rank Adaptation (LoRA), for Clinical Dialogue Summarization. The evaluation results show that LoRA works at par with end-to-end finetuning for a large language model. The paper presents the evaluations done for solving both the Subtask A and B from ImageCLEFmedical {https://www.imageclef.org/2023/medical}","PeriodicalId":232729,"journal":{"name":"Conference and Labs of the Evaluation Forum","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference and Labs of the Evaluation Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.05162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finetuning Large Language Models helps improve the results for domain-specific use cases. End-to-end finetuning of large language models is time and resource intensive and has high storage requirements to store the finetuned version of the large language model. Parameter Efficient Fine Tuning (PEFT) methods address the time and resource challenges by keeping the large language model as a fixed base and add additional layers, which the PEFT methods finetune. This paper demonstrates the evaluation results for one such PEFT method Low Rank Adaptation (LoRA), for Clinical Dialogue Summarization. The evaluation results show that LoRA works at par with end-to-end finetuning for a large language model. The paper presents the evaluations done for solving both the Subtask A and B from ImageCLEFmedical {https://www.imageclef.org/2023/medical}
SuryaKiran在MEDIQA-Sum 2023:利用LoRA进行临床对话总结
调优大型语言模型有助于改进特定领域用例的结果。大型语言模型的端到端微调是时间和资源密集型的,并且存储大型语言模型的微调版本需要很高的存储需求。参数有效微调(PEFT)方法通过将大型语言模型作为固定的基础并添加额外的层来解决时间和资源方面的挑战,PEFT方法可以对这些层进行微调。本文展示了一种用于临床对话总结的PEFT方法低秩适应(Low Rank Adaptation, LoRA)的评价结果。评估结果表明,LoRA与大型语言模型的端到端调优一样有效。本文给出了解决ImageCLEFmedical {https://www.imageclef.org/2023/medical}中的子任务A和B所做的评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信