Steady state probability approximation applied to stochastic model of biological network

Md. Shahriar Karim, David M. Umulis, G. Buzzard
{"title":"Steady state probability approximation applied to stochastic model of biological network","authors":"Md. Shahriar Karim, David M. Umulis, G. Buzzard","doi":"10.1109/GENSiPS.2011.6169442","DOIUrl":null,"url":null,"abstract":"The Steady State (SS) probability distribution for the Chemical Master Equation (CME) is an important quantity used to characterize many biological systems. In this paper, we propose a comparatively easy, yet efficient and accurate, way of finding the SS distribution assuming the existence of a unique deterministic SS (unimodal) of the system. In order to find the approximate SS, we first use the truncated-state space representation to reduce the system to a finite dimension, and subsequently reformulate an eigenvalue problem into a linear system. To demonstrate the utility of the approach, we apply the method and determine the SS probability distribution to quantify the parameter dependency of surface-associated BMP binding proteins (SBPs) in the regulation of BMP mediated signaling and pattern formation.","PeriodicalId":181666,"journal":{"name":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Steady State (SS) probability distribution for the Chemical Master Equation (CME) is an important quantity used to characterize many biological systems. In this paper, we propose a comparatively easy, yet efficient and accurate, way of finding the SS distribution assuming the existence of a unique deterministic SS (unimodal) of the system. In order to find the approximate SS, we first use the truncated-state space representation to reduce the system to a finite dimension, and subsequently reformulate an eigenvalue problem into a linear system. To demonstrate the utility of the approach, we apply the method and determine the SS probability distribution to quantify the parameter dependency of surface-associated BMP binding proteins (SBPs) in the regulation of BMP mediated signaling and pattern formation.
稳态概率逼近在生物网络随机模型中的应用
化学主方程(CME)的稳态(SS)概率分布是用来表征许多生物系统的一个重要量。在本文中,我们提出了一种相对简单、有效和准确的方法,假设系统存在唯一的确定性SS(单峰),求出SS分布。为了找到近似的SS,我们首先使用截断状态空间表示将系统降至有限维,然后将特征值问题重新表述为线性系统。为了证明该方法的实用性,我们应用该方法并确定SS概率分布来量化表面相关BMP结合蛋白(sbp)在BMP介导的信号传导和模式形成调控中的参数依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信