Predicting Frags in Tactic Games at KnowledgePit.ai: ICME 2023 Grand Challenge Report

Andrzej Janusz, D. Ślęzak
{"title":"Predicting Frags in Tactic Games at KnowledgePit.ai: ICME 2023 Grand Challenge Report","authors":"Andrzej Janusz, D. Ślęzak","doi":"10.1109/ICMEW59549.2023.00006","DOIUrl":null,"url":null,"abstract":"We describe a data science competition ICME 2023 Grand Challenge: Predicting Frags in Tactic Games that was organized in association with the IEEE ICME conference series at the KnowledgePit.ai platform. This challenge was the second in a series of competitions related to the analysis of data from a turn-based tactic video game Tactical Troops: Anthracite Shift. We discuss the competition's scope and significance of the considered research problem. We also overview the construction of the baseline solution and the most interesting results obtained by competing teams. We also indicate how the challenge outcomes fit into our future plans related to video game data analytics and the future applications of our KnowledgePit.ai platform.","PeriodicalId":111482,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW59549.2023.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a data science competition ICME 2023 Grand Challenge: Predicting Frags in Tactic Games that was organized in association with the IEEE ICME conference series at the KnowledgePit.ai platform. This challenge was the second in a series of competitions related to the analysis of data from a turn-based tactic video game Tactical Troops: Anthracite Shift. We discuss the competition's scope and significance of the considered research problem. We also overview the construction of the baseline solution and the most interesting results obtained by competing teams. We also indicate how the challenge outcomes fit into our future plans related to video game data analytics and the future applications of our KnowledgePit.ai platform.
在KnowledgePit预测战术游戏中的分数。ICME 2023大挑战报告
我们描述了一场数据科学竞赛ICME 2023大挑战:预测战术游戏中的Frags,该竞赛是与KnowledgePit上的IEEE ICME系列会议联合组织的。人工智能平台。这是与回合制战术电子游戏《Tactical Troops: Anthracite Shift》的数据分析相关的一系列比赛中的第二个挑战。我们讨论了竞赛的范围和所考虑的研究问题的意义。我们还概述了基线解决方案的构建以及竞争团队获得的最有趣的结果。我们还指出了挑战结果如何与我们与电子游戏数据分析和知识坑的未来应用相关的未来计划相适应。人工智能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信