Cognitive biases in Bayesian updating and optimal information sequencing

Sara Mourad, A. Tewfik
{"title":"Cognitive biases in Bayesian updating and optimal information sequencing","authors":"Sara Mourad, A. Tewfik","doi":"10.1109/ICASSP.2015.7178741","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of optimally ordering information to a human subject to maximize detection performance in a binary hypothesis testing problem. We begin by proposing a modification of the traditional Bayesian solution to hypothesis testing problems to incorporate the effect of human cognitive biases. Next, we consider the problem of selecting a subset of information to maximize detection performance in truncated hypothesis testing problems. We then use the solution to that problem to determine the real time ordering of information to enhance human binary hypothesis testing. We verify through simulations that the proposed ordering methods with and without cognitive biases minimize the probability of miss and the probability of false alarm.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we consider the problem of optimally ordering information to a human subject to maximize detection performance in a binary hypothesis testing problem. We begin by proposing a modification of the traditional Bayesian solution to hypothesis testing problems to incorporate the effect of human cognitive biases. Next, we consider the problem of selecting a subset of information to maximize detection performance in truncated hypothesis testing problems. We then use the solution to that problem to determine the real time ordering of information to enhance human binary hypothesis testing. We verify through simulations that the proposed ordering methods with and without cognitive biases minimize the probability of miss and the probability of false alarm.
贝叶斯更新与最优信息排序中的认知偏差
在本文中,我们考虑了在一个二元假设检验问题中,为使检测性能最大化而对人类受试者的信息进行最优排序的问题。我们首先提出对传统贝叶斯解决方案的修改,以解决假设检验问题,以纳入人类认知偏差的影响。接下来,我们考虑在截断假设检验问题中选择信息子集以最大化检测性能的问题。然后,我们使用该问题的解决方案来确定信息的实时排序,以增强人类二元假设检验。仿真结果表明,无论是否存在认知偏差,所提出的排序方法都能最大限度地降低误报概率和误报概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信