Clustering Needles in a Haystack: An Information Theoretic Analysis of Minority and Outlier Detection

S. Ando
{"title":"Clustering Needles in a Haystack: An Information Theoretic Analysis of Minority and Outlier Detection","authors":"S. Ando","doi":"10.1109/ICDM.2007.53","DOIUrl":null,"url":null,"abstract":"Identifying atypical objects is one of the traditional topics in machine learning. Recently, novel approaches, e.g., Minority Detection and One-class clustering, have explored further to identify clusters of atypical objects which strongly contrast from the rest of the data in terms of their distribution or density. This paper analyzes such tasks from an information theoretic perspective. Based on Information Bottleneck formalization, these tasks interpret to increasing the averaged atypicalness of the clusters while reducing the complexity of the clustering. This formalization yields a unifying view of the new approaches as well as the classic outlier detection. We also present a scalable minimization algorithm which exploits the localized form of the cost function over individual clusters. The proposed algorithm is evaluated using simulated datasets and a text classification benchmark, in comparison with an existing method.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

Identifying atypical objects is one of the traditional topics in machine learning. Recently, novel approaches, e.g., Minority Detection and One-class clustering, have explored further to identify clusters of atypical objects which strongly contrast from the rest of the data in terms of their distribution or density. This paper analyzes such tasks from an information theoretic perspective. Based on Information Bottleneck formalization, these tasks interpret to increasing the averaged atypicalness of the clusters while reducing the complexity of the clustering. This formalization yields a unifying view of the new approaches as well as the classic outlier detection. We also present a scalable minimization algorithm which exploits the localized form of the cost function over individual clusters. The proposed algorithm is evaluated using simulated datasets and a text classification benchmark, in comparison with an existing method.
干草堆中的聚类针:少数和离群值检测的信息论分析
识别非典型对象是机器学习中的传统课题之一。最近,新的方法,如少数检测和一类聚类,已经进一步探索了非典型对象的聚类,这些非典型对象在分布或密度方面与其他数据形成强烈对比。本文从信息论的角度对这些任务进行了分析。基于信息瓶颈形式化,这些任务解释为在降低聚类复杂性的同时增加聚类的平均非典型性。这种形式化产生了新方法和经典离群值检测的统一视图。我们还提出了一种可扩展的最小化算法,该算法利用了单个集群上成本函数的局部形式。利用模拟数据集和文本分类基准对该算法进行了评估,并与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信