{"title":"A More Precise Abstract Domain for Multi-level Caches for Tighter WCET Analysis","authors":"Tyler Sondag, Hridesh Rajan","doi":"10.1109/RTSS.2010.8","DOIUrl":null,"url":null,"abstract":"As demand for computational power of embedded applications has increased, their architectures have become more complex. One result of this increased complexity are real-time embedded systems with set-associative multi-level caches. Multi-level caches complicate the process of program analysis techniques such as worst case execution time (WCET). To address this need we have developed a sound cache behavior analysis that handles multi-level instruction and data caches. Our technique relies on a new abstraction, live caches, which models relationships between cache levels to improve accuracy. Our analysis improves upon previous multi-level cache analysis in three ways. First, it handles write-back, a common feature of cache models, soundly. Second, it handles both instruction and data cache hierarchies, and third, it improves precision of cache analysis. For standard WCET benchmarks and a multi-level cache configuration analyzed by previous work, we observed that live caches improve WCET precision resulting in an average of 6.3% reduction in computed WCET.","PeriodicalId":202891,"journal":{"name":"2010 31st IEEE Real-Time Systems Symposium","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 31st IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2010.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
As demand for computational power of embedded applications has increased, their architectures have become more complex. One result of this increased complexity are real-time embedded systems with set-associative multi-level caches. Multi-level caches complicate the process of program analysis techniques such as worst case execution time (WCET). To address this need we have developed a sound cache behavior analysis that handles multi-level instruction and data caches. Our technique relies on a new abstraction, live caches, which models relationships between cache levels to improve accuracy. Our analysis improves upon previous multi-level cache analysis in three ways. First, it handles write-back, a common feature of cache models, soundly. Second, it handles both instruction and data cache hierarchies, and third, it improves precision of cache analysis. For standard WCET benchmarks and a multi-level cache configuration analyzed by previous work, we observed that live caches improve WCET precision resulting in an average of 6.3% reduction in computed WCET.