Transmission Power Line Fault Detection using Convolutional Neural Networks

Kalanidhi K, B. D, Vinod Kumar D
{"title":"Transmission Power Line Fault Detection using Convolutional Neural Networks","authors":"Kalanidhi K, B. D, Vinod Kumar D","doi":"10.4108/EAI.7-6-2021.2308661","DOIUrl":null,"url":null,"abstract":": In an electrical power system, most of the faults occurs in overhead transmission lines because of most of the conductor exposure to the atmosphere. Therefore, Insulated Overhead Conductors (IOCs) are widely used. To overcome this, a robust real-time PD fault analysis system is required. To analyze and classify the raw voltage signal for detection of PD's in IOC's a Convolutional Neural Network (CNN) based fault classification algorithm is proposed in this paper. The CNN is implemented using popular pre-trained CNN architectures such as AlexNet, VGG16 & ResNet are applied to the voltage signals in the dataset. From the values of Precision, Recall & F1-Score it is observed that ResNet architecture provides the best prediction and classification results.","PeriodicalId":422301,"journal":{"name":"Proceedings of the First International Conference on Computing, Communication and Control System, I3CAC 2021, 7-8 June 2021, Bharath University, Chennai, India","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Conference on Computing, Communication and Control System, I3CAC 2021, 7-8 June 2021, Bharath University, Chennai, India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.7-6-2021.2308661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

: In an electrical power system, most of the faults occurs in overhead transmission lines because of most of the conductor exposure to the atmosphere. Therefore, Insulated Overhead Conductors (IOCs) are widely used. To overcome this, a robust real-time PD fault analysis system is required. To analyze and classify the raw voltage signal for detection of PD's in IOC's a Convolutional Neural Network (CNN) based fault classification algorithm is proposed in this paper. The CNN is implemented using popular pre-trained CNN architectures such as AlexNet, VGG16 & ResNet are applied to the voltage signals in the dataset. From the values of Precision, Recall & F1-Score it is observed that ResNet architecture provides the best prediction and classification results.
基于卷积神经网络的输电线路故障检测
当前位置在电力系统中,大多数故障发生在架空输电线路上,因为大部分导线暴露在大气中。因此,绝缘架空导体(ioc)得到了广泛的应用。为了克服这一点,需要一个强大的实时PD故障分析系统。为了对原始电压信号进行分析和分类,用于故障检测,提出了一种基于卷积神经网络(CNN)的故障分类算法。CNN是使用流行的预训练CNN架构(如AlexNet)实现的,VGG16和ResNet应用于数据集中的电压信号。从Precision, Recall和F1-Score的值可以看出,ResNet架构提供了最好的预测和分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信