Multi-Valued Neuron with a periodic activation function - learning with negative examples

M. LupeaV., C. Cernazanu-Glavan
{"title":"Multi-Valued Neuron with a periodic activation function - learning with negative examples","authors":"M. LupeaV., C. Cernazanu-Glavan","doi":"10.1109/SACI.2014.6840067","DOIUrl":null,"url":null,"abstract":"The efficiency of Multi-Value Neuron and Multi-value Neuron with a periodic activation function are well presented in literature. Using these types of neurons, highly non-linear problems can be solved using a single neuron and not a multi-layer Neural Network (NN). On the other hand, using negative example during learning was shown to increase the overall efficiency. This paper brings these concepts together.","PeriodicalId":163447,"journal":{"name":"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2014.6840067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The efficiency of Multi-Value Neuron and Multi-value Neuron with a periodic activation function are well presented in literature. Using these types of neurons, highly non-linear problems can be solved using a single neuron and not a multi-layer Neural Network (NN). On the other hand, using negative example during learning was shown to increase the overall efficiency. This paper brings these concepts together.
具有周期激活函数的多值神经元——负例学习
多值神经元和具有周期激活函数的多值神经元的效率在文献中得到了很好的体现。使用这些类型的神经元,高度非线性问题可以使用单个神经元而不是多层神经网络(NN)来解决。另一方面,在学习过程中使用负面例子可以提高整体效率。本文将这些概念结合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信