Quantum-enhanced Regression Analysis Using State-of-the-art QLSAs and QIPMs

Mohammadhossein Mohammadisiahroudi, Zeguan Wu, Brandon Augustino, T. Terlaky, Arielle Carr
{"title":"Quantum-enhanced Regression Analysis Using State-of-the-art QLSAs and QIPMs","authors":"Mohammadhossein Mohammadisiahroudi, Zeguan Wu, Brandon Augustino, T. Terlaky, Arielle Carr","doi":"10.1109/SEC54971.2022.00055","DOIUrl":null,"url":null,"abstract":"Quantum computing has the potential to speed up machine learning methods. One major direction is using quantum linear algebra to solve linear system problems or optimization problems in the machine learning area. Quantum approaches in the literature for different types of least squares problems demonstrate speedups w.r.t. dimension but have disadvantages w.r.t. precision and condition number. In this paper, we discuss how an iterative refinement scheme can deliver an accurate solution without the excessive cost of Quantum Linear System Algorithms (QLSAs). In addition, we propose an adaptive regularization approach that can mitigate the effect of condition number on solution time. In the second part of this paper, we investigate how state-of-the-art Quantum Interior Point Methods (QIPMs) can solve more sophisticated regression problems such as Lasso regression and support vector machine problems, which can be reformulated as quadratic optimization problems.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computing has the potential to speed up machine learning methods. One major direction is using quantum linear algebra to solve linear system problems or optimization problems in the machine learning area. Quantum approaches in the literature for different types of least squares problems demonstrate speedups w.r.t. dimension but have disadvantages w.r.t. precision and condition number. In this paper, we discuss how an iterative refinement scheme can deliver an accurate solution without the excessive cost of Quantum Linear System Algorithms (QLSAs). In addition, we propose an adaptive regularization approach that can mitigate the effect of condition number on solution time. In the second part of this paper, we investigate how state-of-the-art Quantum Interior Point Methods (QIPMs) can solve more sophisticated regression problems such as Lasso regression and support vector machine problems, which can be reformulated as quadratic optimization problems.
使用最先进的qsas和qipm的量子增强回归分析
量子计算有可能加速机器学习方法。一个主要方向是使用量子线性代数来解决机器学习领域的线性系统问题或优化问题。文献中对不同类型的最小二乘问题的量子方法表明,量子方法在求解广义相对论维数方面具有较快的速度,但在广义相对论精度和条件数方面存在不足。在本文中,我们讨论了迭代优化方案如何在没有量子线性系统算法(QLSAs)的过高成本的情况下提供准确的解决方案。此外,我们提出了一种自适应正则化方法,可以减轻条件个数对求解时间的影响。在本文的第二部分,我们研究了最先进的量子内点法(QIPMs)如何解决更复杂的回归问题,如Lasso回归和支持向量机问题,这些问题可以重新表述为二次优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信