Análise de Regressão Aplicada a Previsão de Reprovação de Alunos em Plataforma de Ensino a Distância

F. Araújo, R. Rodrigues
{"title":"Análise de Regressão Aplicada a Previsão de Reprovação de Alunos em Plataforma de Ensino a Distância","authors":"F. Araújo, R. Rodrigues","doi":"10.25286/REPA.V3I3.954","DOIUrl":null,"url":null,"abstract":"Um dos principais problemas enfrentados no Ensino a Distância são os riscos de reprovação e evasão de alunos. Com o objetivo de auxiliar Professores e gestores nessa modalidade de ensino, este trabalho demonstra resultados das aplicações práticas de técnicas estatísticas e mineração de dados para previsão de reprovação de Alunos através da Análise de Regressão Logística que demonstrou sua eficácia através de excelentes índices de desempenho em três modelos de dados utilizados, índices estes que foram considerados estatisticamente iguais através da Análise de Variância (ANOVA) aplicada ao comparar os índices de desempenho dos modelos de Regressão gerados. Através dos índices de significância das variáveis selecionadas em cada modelo é possível identificar os meios de interação que mais contribuem com o desempenho do aluno, auxiliando no combate a reprovação.","PeriodicalId":331078,"journal":{"name":"Revista de Engenharia e Pesquisa Aplicada","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Engenharia e Pesquisa Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25286/REPA.V3I3.954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Um dos principais problemas enfrentados no Ensino a Distância são os riscos de reprovação e evasão de alunos. Com o objetivo de auxiliar Professores e gestores nessa modalidade de ensino, este trabalho demonstra resultados das aplicações práticas de técnicas estatísticas e mineração de dados para previsão de reprovação de Alunos através da Análise de Regressão Logística que demonstrou sua eficácia através de excelentes índices de desempenho em três modelos de dados utilizados, índices estes que foram considerados estatisticamente iguais através da Análise de Variância (ANOVA) aplicada ao comparar os índices de desempenho dos modelos de Regressão gerados. Através dos índices de significância das variáveis selecionadas em cada modelo é possível identificar os meios de interação que mais contribuem com o desempenho do aluno, auxiliando no combate a reprovação.
回归分析应用于远程学习平台学生失败预测
远程教育面临的主要问题之一是学生不及格和逃避的风险。为了辅助教师教学和管理模式,这显示了实际应用的结果统计和数据挖掘技术来预测失败的学生通过逻辑回归分析表明其有效性通过出色的性能指标在三个数据的模型,这些指标被认为是统计上相等的方差分析(ANOVA)应用于比较生成的回归模型的性能指标。通过在每个模型中选择的变量的显著性指标,可以确定对学生表现贡献最大的互动方式,帮助对抗失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信