Proving and disproving information inequalities

Siu-Wai Ho, C. Tan, R. Yeung
{"title":"Proving and disproving information inequalities","authors":"Siu-Wai Ho, C. Tan, R. Yeung","doi":"10.1109/ISIT.2014.6875347","DOIUrl":null,"url":null,"abstract":"Proving an information inequality is a crucial step in establishing the converse results in coding theorems. However, an information inequality involving many random variables is difficult to be proved manually. In [1], Yeung developed a framework that uses linear programming for verifying linear information inequalities. Under this framework, this paper considers a few other problems that can be solved by using Lagrange duality and convex approximation. We will demonstrate how linear programming can be used to find an analytic proof of an information inequality. The way to find a shortest proof is explored. When a given information inequality cannot be proved, the sufficient conditions for a counterexample to disprove the information inequality are found by linear programming.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Proving an information inequality is a crucial step in establishing the converse results in coding theorems. However, an information inequality involving many random variables is difficult to be proved manually. In [1], Yeung developed a framework that uses linear programming for verifying linear information inequalities. Under this framework, this paper considers a few other problems that can be solved by using Lagrange duality and convex approximation. We will demonstrate how linear programming can be used to find an analytic proof of an information inequality. The way to find a shortest proof is explored. When a given information inequality cannot be proved, the sufficient conditions for a counterexample to disprove the information inequality are found by linear programming.
证明和反驳信息不平等
证明信息不等式是建立编码定理逆结果的关键步骤。然而,涉及多个随机变量的信息不等式很难人工证明。1986年,杨氏开发了一个使用线性规划来验证线性信息不等式的框架。在此框架下,本文考虑了其他一些可以用拉格朗日对偶性和凸逼近来解决的问题。我们将演示如何使用线性规划来找到信息不等式的解析证明。探索了寻找最短证明的方法。当给定的信息不等式不能被证明时,利用线性规划找到反例证明该信息不等式的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信