Network-welfare maximization for Cognitive Radio Networks via optimal matching

Yuan Wu, D. Tsang, L. Qian, L. Meng
{"title":"Network-welfare maximization for Cognitive Radio Networks via optimal matching","authors":"Yuan Wu, D. Tsang, L. Qian, L. Meng","doi":"10.1109/ICCChina.2012.6356952","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the network-welfare optimization for a Cognitive Radio Network (CRN) consisting of multiple Primary-Users (PUs) and multiple Secondary-Users (SUs). For each pair of PU and SU, the interaction between them is modeled as a Stackelberg game where the PU shares its licensed channel with the SU by charging the interference, and the SU is allowed to access the PU channel by paying the interference fee. The objective of the CRN thus is to maximize the network-welfare of all PUs and SUs by forming optimal pairs among them, which can be considered as a Maximum Weight Matching (MWM) problem on a bipartite graph. We first propose an efficient algorithm to quantify the optimal social welfare associated with each pair of PU and SU. Then, by exploiting the special structure of the MWM problem, we propose two algorithms, namely, a modified Belief Propagation (BP) algorithm and a heuristic algorithm based on Simulated Annealing (SA) to determine the optimal matching.","PeriodicalId":154082,"journal":{"name":"2012 1st IEEE International Conference on Communications in China (ICCC)","volume":"25 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st IEEE International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChina.2012.6356952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we consider the network-welfare optimization for a Cognitive Radio Network (CRN) consisting of multiple Primary-Users (PUs) and multiple Secondary-Users (SUs). For each pair of PU and SU, the interaction between them is modeled as a Stackelberg game where the PU shares its licensed channel with the SU by charging the interference, and the SU is allowed to access the PU channel by paying the interference fee. The objective of the CRN thus is to maximize the network-welfare of all PUs and SUs by forming optimal pairs among them, which can be considered as a Maximum Weight Matching (MWM) problem on a bipartite graph. We first propose an efficient algorithm to quantify the optimal social welfare associated with each pair of PU and SU. Then, by exploiting the special structure of the MWM problem, we propose two algorithms, namely, a modified Belief Propagation (BP) algorithm and a heuristic algorithm based on Simulated Annealing (SA) to determine the optimal matching.
基于最优匹配的认知无线网络网络福利最大化
本文研究了由多个主用户(pu)和多个从用户(SUs)组成的认知无线网络(CRN)的网络福利优化问题。对于每一对PU和SU,它们之间的相互作用建模为Stackelberg博弈,其中PU通过收取干扰费与SU共享其许可通道,SU通过支付干扰费允许进入PU通道。因此,CRN的目标是通过在所有pu和su之间形成最优对来最大化网络福利,这可以被认为是一个二部图上的最大权重匹配(MWM)问题。首先,我们提出了一种有效的算法来量化每对PU和SU所关联的最优社会福利,然后,利用MWM问题的特殊结构,我们提出了两种算法,即改进的信念传播(BP)算法和基于模拟退火(SA)的启发式算法来确定最优匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信