A Nonparametric Bayesian Approach for Probabilistic Representation of Power Uncertainties

Weigao Sun, M. Zamani
{"title":"A Nonparametric Bayesian Approach for Probabilistic Representation of Power Uncertainties","authors":"Weigao Sun, M. Zamani","doi":"10.1109/SmartGridComm.2019.8909785","DOIUrl":null,"url":null,"abstract":"This paper develops a nonparameteric Bayesian approach for the probabilistic representation of power system uncertainties involved with wind, solar and load power. The developed approach based on Dirichlet process mixture model (DPMM) analytically formulates the probability distributions of power uncertainties without prior knowledge of the number of mixture components. This provides a great improvement in probabilistic representation of power uncertainties as the proposed model can accommodate the ever growing power data. A computationally efficient VBI method is exploited to estimate the parameters involved with DPMM. Moreover, a novel truncated DPMM is designed to fit the special truncation feature of wind power distributions. The performance of proposed probabilistic representation approach for power uncertainties on real datasets of wind, solar and load power are validated and illustrated in the numerical simulations.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper develops a nonparameteric Bayesian approach for the probabilistic representation of power system uncertainties involved with wind, solar and load power. The developed approach based on Dirichlet process mixture model (DPMM) analytically formulates the probability distributions of power uncertainties without prior knowledge of the number of mixture components. This provides a great improvement in probabilistic representation of power uncertainties as the proposed model can accommodate the ever growing power data. A computationally efficient VBI method is exploited to estimate the parameters involved with DPMM. Moreover, a novel truncated DPMM is designed to fit the special truncation feature of wind power distributions. The performance of proposed probabilistic representation approach for power uncertainties on real datasets of wind, solar and load power are validated and illustrated in the numerical simulations.
功率不确定性概率表示的非参数贝叶斯方法
本文提出了一种非参数贝叶斯方法,用于风电、太阳能和负荷电力系统不确定性的概率表示。该方法基于Dirichlet过程混合模型(DPMM),在不知道混合组分数量的前提下,解析地表达了功率不确定性的概率分布。由于所提出的模型可以适应不断增长的功率数据,因此在功率不确定性的概率表示方面提供了很大的改进。利用一种计算效率高的VBI方法来估计DPMM所涉及的参数。此外,针对风电功率分布的特殊截断特性,设计了一种新型截尾DPMM。通过数值模拟验证了所提出的功率不确定性概率表示方法在风能、太阳能和负荷等实际数据集上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信