A comprehensive hydrodynamical model for charge transport in graphene

G. Mascali, V. Romano
{"title":"A comprehensive hydrodynamical model for charge transport in graphene","authors":"G. Mascali, V. Romano","doi":"10.1109/IWCE.2014.6865866","DOIUrl":null,"url":null,"abstract":"In this paper we present a hydrodynamical model for the charge and the heat transport in graphene. The macroscopic variables are moments of the electron, hole and phonon distribution functions, and their evolution equations are derived from the Boltzmann equations by integration. The system of equations is closed by means of the maximum entropy principle and all the main scattering mechanisms are taken into account. Numerical simulations are presented in the case of a suspended graphene monolayer.","PeriodicalId":168149,"journal":{"name":"2014 International Workshop on Computational Electronics (IWCE)","volume":"17 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2014.6865866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper we present a hydrodynamical model for the charge and the heat transport in graphene. The macroscopic variables are moments of the electron, hole and phonon distribution functions, and their evolution equations are derived from the Boltzmann equations by integration. The system of equations is closed by means of the maximum entropy principle and all the main scattering mechanisms are taken into account. Numerical simulations are presented in the case of a suspended graphene monolayer.
石墨烯中电荷输运的综合流体动力学模型
本文提出了石墨烯中电荷和热输运的流体动力学模型。宏观变量为电子、空穴和声子分布函数的矩,它们的演化方程由玻尔兹曼方程通过积分导出。利用最大熵原理对方程组进行封闭,并考虑了所有主要散射机制。在悬浮石墨烯单层的情况下进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信