VISOR: Visualizing Summaries of Ordered Data

Giovanni Mahlknecht, Michael H. Böhlen, Anton Dignös, J. Gamper
{"title":"VISOR: Visualizing Summaries of Ordered Data","authors":"Giovanni Mahlknecht, Michael H. Böhlen, Anton Dignös, J. Gamper","doi":"10.1145/3085504.3091115","DOIUrl":null,"url":null,"abstract":"In this paper, we present the VISOR tool, which helps the user to explore data and their summary structures by visualizing the relationships between the size k of a data summary and the induced error. Given an ordered dataset, VISOR allows to vary the size k of a data summary and to immediately see the effect on the induced error, by visualizing the error and its dependency on k in an ϵ-graph and Δ-graph, respectively. The user can easily explore different values of k and determine the best value for the summary size. VISOR allows also to compare different summarization methods, such as piecewise constant approximation, piecewise aggregation approximation or V-optimal histograms. We show several demonstration scenarios, including how to determine an appropriate value for the summary size and comparing different summarization techniques.","PeriodicalId":431308,"journal":{"name":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3085504.3091115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we present the VISOR tool, which helps the user to explore data and their summary structures by visualizing the relationships between the size k of a data summary and the induced error. Given an ordered dataset, VISOR allows to vary the size k of a data summary and to immediately see the effect on the induced error, by visualizing the error and its dependency on k in an ϵ-graph and Δ-graph, respectively. The user can easily explore different values of k and determine the best value for the summary size. VISOR allows also to compare different summarization methods, such as piecewise constant approximation, piecewise aggregation approximation or V-optimal histograms. We show several demonstration scenarios, including how to determine an appropriate value for the summary size and comparing different summarization techniques.
VISOR:有序数据的可视化摘要
在本文中,我们介绍了VISOR工具,它通过可视化数据摘要大小k与诱导误差之间的关系来帮助用户探索数据及其摘要结构。给定一个有序的数据集,VISOR允许改变数据摘要的大小k,并通过分别在ϵ-graph和Δ-graph中可视化错误及其对k的依赖关系,立即看到对诱导错误的影响。用户可以很容易地探索不同的k值,并确定汇总大小的最佳值。VISOR还允许比较不同的汇总方法,如分段常数近似,分段聚合近似或v -最优直方图。我们展示了几个演示场景,包括如何确定摘要大小的适当值,以及比较不同的摘要技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信