Computation on Jacobians of Hyperelliptic Curves of Genus 3

Zhili Dong, Minzhong Luo, Chang Lv
{"title":"Computation on Jacobians of Hyperelliptic Curves of Genus 3","authors":"Zhili Dong, Minzhong Luo, Chang Lv","doi":"10.1109/CSP58884.2023.00032","DOIUrl":null,"url":null,"abstract":"In this article, we give an easy method to distinguish different cases of additions on Jacobians of hyperelliptic curves of genus 3. In addition, we give an advanced algorithm for group laws on Jacobian of hyperelliptic curves of genus 3. By this method, our algorithm can handle all kinds of inputs without recalling a generic algorithm. Our method is mainly based on Harley's algorithm. However, we use linear algebra over finite fields, instead of Chinese Reminder Theorem over function fields. Moreover, We did $2\\times 10^{8}$ experiments in the finite field $\\mathbb{F}_{2^{61}-1}$, our algorithm runs 0.033% faster than previous works in general addition.","PeriodicalId":255083,"journal":{"name":"2023 7th International Conference on Cryptography, Security and Privacy (CSP)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Cryptography, Security and Privacy (CSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSP58884.2023.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we give an easy method to distinguish different cases of additions on Jacobians of hyperelliptic curves of genus 3. In addition, we give an advanced algorithm for group laws on Jacobian of hyperelliptic curves of genus 3. By this method, our algorithm can handle all kinds of inputs without recalling a generic algorithm. Our method is mainly based on Harley's algorithm. However, we use linear algebra over finite fields, instead of Chinese Reminder Theorem over function fields. Moreover, We did $2\times 10^{8}$ experiments in the finite field $\mathbb{F}_{2^{61}-1}$, our algorithm runs 0.033% faster than previous works in general addition.
3属超椭圆曲线雅可比矩阵的计算
本文给出了一种判别3属超椭圆曲线雅可比矩阵上不同加法情况的简便方法。此外,给出了3属超椭圆曲线雅可比矩阵群律的一种改进算法。通过这种方法,我们的算法可以处理所有类型的输入,而无需调用通用算法。我们的方法主要基于哈雷算法。然而,我们在有限域上使用线性代数,而不是在函数域上使用中国提醒定理。此外,我们在有限域$\mathbb{F}_{2^{61}-1}$上做了$2\乘以10^{8}$实验,我们的算法在一般加法上比以前的工作快0.033%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信