Adaptation of parameters of BP algorithm using learning automata

H. Beigy, M. Meybodi
{"title":"Adaptation of parameters of BP algorithm using learning automata","authors":"H. Beigy, M. Meybodi","doi":"10.1109/SBRN.2000.889708","DOIUrl":null,"url":null,"abstract":"The backpropagation (BP) algorithm is a systematic method for training multilayer neural networks. Despite the many successful applications of backpropagation, it has many drawbacks. For complex problems it may require a long time to train the networks, and it may not train at all. Long training time can be the result of the non-optimal parameters. It is not easy to choose appropriate value of the parameters for a particular problem. In the paper, by interconnection of fixed structure learning automata (FSLA) to the feedforward neural networks, we apply learning automata scheme for adjusting these parameters based on the observation of random response of neural networks. The main motivation in using learning automata as an adaptation algorithm is to use its capability of global optimization when dealing with multi-model surface. The feasibility of proposed method is shown through simulations on three learning problems: exclusive-or, encoding problems, and digit recognition. The simulation results show that the adaptation of these parameters using this method not only increases the convergence rate of learning but it increases the likelihood of escaping from the local minima.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The backpropagation (BP) algorithm is a systematic method for training multilayer neural networks. Despite the many successful applications of backpropagation, it has many drawbacks. For complex problems it may require a long time to train the networks, and it may not train at all. Long training time can be the result of the non-optimal parameters. It is not easy to choose appropriate value of the parameters for a particular problem. In the paper, by interconnection of fixed structure learning automata (FSLA) to the feedforward neural networks, we apply learning automata scheme for adjusting these parameters based on the observation of random response of neural networks. The main motivation in using learning automata as an adaptation algorithm is to use its capability of global optimization when dealing with multi-model surface. The feasibility of proposed method is shown through simulations on three learning problems: exclusive-or, encoding problems, and digit recognition. The simulation results show that the adaptation of these parameters using this method not only increases the convergence rate of learning but it increases the likelihood of escaping from the local minima.
基于学习自动机的BP算法参数自适应
BP算法是一种训练多层神经网络的系统方法。尽管反向传播有许多成功的应用,但它也有许多缺点。对于复杂的问题,可能需要很长时间来训练网络,也可能根本不训练。非最优参数会导致训练时间过长。对于特定的问题,选择合适的参数值是不容易的。本文通过将固定结构学习自动机(FSLA)与前馈神经网络互连,利用观察神经网络的随机响应,应用学习自动机方案对这些参数进行调整。使用学习自动机作为自适应算法的主要动机是利用其在处理多模型曲面时的全局寻优能力。通过对异或、编码和数字识别三个学习问题的仿真,证明了该方法的可行性。仿真结果表明,利用该方法对这些参数进行自适应,不仅提高了学习的收敛速度,而且增加了脱离局部极小值的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信