Defense against sybil attacks in directed social networks

Pengfei Liu, Xiaohan Wang, Xiangqian Che, Zhaoqun Chen, Yuantao Gu
{"title":"Defense against sybil attacks in directed social networks","authors":"Pengfei Liu, Xiaohan Wang, Xiangqian Che, Zhaoqun Chen, Yuantao Gu","doi":"10.1109/ICDSP.2014.6900836","DOIUrl":null,"url":null,"abstract":"In this paper, we attempt to solve the problem of defense against sybil attacks in directed social networks. We propose a set of measures for the quality of network partitions, with modularity as a special case. We present an algorithm based on the set of measures and iterative optimization to detect the sybil region. The algorithm is evaluated using a subset of real-world social topology and is confirmed to be efficient for solving the problem. Moreover, a comparison between the proposed algorithm and SybilDefender is provided, which shows that the proposed algorithm is superior for the sybil region detection problem in directed social networks.","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we attempt to solve the problem of defense against sybil attacks in directed social networks. We propose a set of measures for the quality of network partitions, with modularity as a special case. We present an algorithm based on the set of measures and iterative optimization to detect the sybil region. The algorithm is evaluated using a subset of real-world social topology and is confirmed to be efficient for solving the problem. Moreover, a comparison between the proposed algorithm and SybilDefender is provided, which shows that the proposed algorithm is superior for the sybil region detection problem in directed social networks.
防御定向社交网络中的sybil攻击
在本文中,我们试图解决定向社交网络中防御sybil攻击的问题。我们提出了一套衡量网络分区质量的方法,并以模块化为特例。提出了一种基于测度集和迭代优化的符号区域检测算法。该算法使用现实世界社会拓扑的一个子集进行评估,并被证实是有效的解决问题。此外,将该算法与SybilDefender算法进行了比较,结果表明该算法在有向社交网络中的sybilregion检测问题上具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信