Pengenalan Lirik Lagu Otomatis Pada Video Lagu Indonesia Menggunakan Hidden Markov Model Yang Dilengkapi Music Removal

L. Tirta, Joan Santoso, Endang Setyati
{"title":"Pengenalan Lirik Lagu Otomatis Pada Video Lagu Indonesia Menggunakan Hidden Markov Model Yang Dilengkapi Music Removal","authors":"L. Tirta, Joan Santoso, Endang Setyati","doi":"10.37823/insight.v4i2.225","DOIUrl":null,"url":null,"abstract":"Video sangat penting untuk membuat informasi berupa suara dalam video agar dapat dipahami oleh semua kalangan masyarakat, dan orang-orang yang memiliki masalah pendengaran yaitu dengan cara paling alami terletak pada penggunaan subtitle. Oleh karena itu, peneliti membuat pengenalan lirik lagu otomatis pada video lagu Indonesia menggunakan Hidden Markov Model yang dilengkapi music removal. Dalam pengenalan suara lebih akurat dilakukan dengan menggunakan model HMM yang dilengkapi oleh MFCC (kata yang cocok 81% dan WER 19%) dibandingkan dengan model LDA + MFCC (kata yang cocok 71% dan WER 29%) dan DWT + MFCC (kata yang cocok 61% dan WER 39%). Jumlah kata dan sample suara pada library Bahasa Indonesia yang digunakan cukup sangat mempengaruhi MFCC dan CMU Sphinx-4, Nada pada inputan lagu yang akan diproses CMU Sphinx-4 juga sangat berpengaruh pada tingkat keberhasilan, dikarenakan CMU Sphinx-4 sangat sensitif dengan nada yang terlalu tinggi dan noise yang ada pada inputan lagu tersebut sehingga peneliti menambahkan fitur ekstraksi pada suara yaitu menggunakan MFCC. Dalam hal ini menggunakan dataset kecil terlebih dahulu untuk memastikan metode Hidden Markov Model yang dilengkapi MFCC dan CMU Sphinx-4 dapat berjalan dengan baik, Dari penelitian beberapa peneliti sebelumnya, maka hasil akhir yang diperoleh dengan menggunakan metode HMM yang dilengkapi oleh MFCC dan CMU Sphinx-4 dalam penelitian ini mendapatkan hasil akurasi training 78% dan testing 81% kecocokan kata pada video lagu.","PeriodicalId":273538,"journal":{"name":"Journal of Information System,Graphics, Hospitality and Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information System,Graphics, Hospitality and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37823/insight.v4i2.225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Video sangat penting untuk membuat informasi berupa suara dalam video agar dapat dipahami oleh semua kalangan masyarakat, dan orang-orang yang memiliki masalah pendengaran yaitu dengan cara paling alami terletak pada penggunaan subtitle. Oleh karena itu, peneliti membuat pengenalan lirik lagu otomatis pada video lagu Indonesia menggunakan Hidden Markov Model yang dilengkapi music removal. Dalam pengenalan suara lebih akurat dilakukan dengan menggunakan model HMM yang dilengkapi oleh MFCC (kata yang cocok 81% dan WER 19%) dibandingkan dengan model LDA + MFCC (kata yang cocok 71% dan WER 29%) dan DWT + MFCC (kata yang cocok 61% dan WER 39%). Jumlah kata dan sample suara pada library Bahasa Indonesia yang digunakan cukup sangat mempengaruhi MFCC dan CMU Sphinx-4, Nada pada inputan lagu yang akan diproses CMU Sphinx-4 juga sangat berpengaruh pada tingkat keberhasilan, dikarenakan CMU Sphinx-4 sangat sensitif dengan nada yang terlalu tinggi dan noise yang ada pada inputan lagu tersebut sehingga peneliti menambahkan fitur ekstraksi pada suara yaitu menggunakan MFCC. Dalam hal ini menggunakan dataset kecil terlebih dahulu untuk memastikan metode Hidden Markov Model yang dilengkapi MFCC dan CMU Sphinx-4 dapat berjalan dengan baik, Dari penelitian beberapa peneliti sebelumnya, maka hasil akhir yang diperoleh dengan menggunakan metode HMM yang dilengkapi oleh MFCC dan CMU Sphinx-4 dalam penelitian ini mendapatkan hasil akurasi training 78% dan testing 81% kecocokan kata pada video lagu.
印尼歌曲视频自动歌词介绍使用带有音乐消除的隐藏马尔可夫模型
视频对于在视频中创建声音信息是至关重要的,让所有人都能理解,而听力问题的人最自然的方式是使用字幕。因此,研究人员使用带有音乐消除的隐藏马尔可夫模型为印尼歌曲视频编写了自动歌词导论。更准确地说,声音识别是由MFCC(匹配的单词81%和WER 19%)和LDA + MFCC(匹配的单词71%和WER 29%)和DWT + MFCC(匹配的单词61%和WER 39%)进行的。字数和声音样本在图书馆使用印尼语的足够的MFCC产生深远的影响和CMU Sphinx-4, inputan歌的音调会处理CMU Sphinx-4也很影响成功率,由于CMU Sphinx-4非常敏感的音调太高,歌曲在inputan的噪音,以至于研究人员添加提取特征就是用MFCC的声音。在这方面采用先小数据集,以确保有隐藏的MFCC配备的马尔科夫模型和CMU Sphinx-4可以顺利,先前的一些研究人员的研究,因此获得的结果用嗯MFCC所配备的方法和CMU Sphinx-4这项研究结果准确性训练中78%和歌曲测试视频中的81%的单词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信