Some algebraic aspects of the Turaev cobracket

Nariya Kawazumi
{"title":"Some algebraic aspects of the Turaev cobracket","authors":"Nariya Kawazumi","doi":"10.4171/irma/33-1/17","DOIUrl":null,"url":null,"abstract":"The Turaev cobracket, a loop operation introduced by V. Turaev, which measures self-intersection of a loop on a surface, is a modification of a path operation introduced earlier by Turaev himself, as well as a counterpart of the Goldman bracket. In this survey based on the author's joint works with A. Alekseev, Y. Kuno and F. Naef, we review some algebraic aspects of the cobracket and its framed variants including their formal description, an application to the mapping class group of the surface and a relation to the (higher genus) Kashiwara-Vergne problem. In addition, we review a homological description of the cobracket after R. Hain.","PeriodicalId":270093,"journal":{"name":"Topology and Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/irma/33-1/17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Turaev cobracket, a loop operation introduced by V. Turaev, which measures self-intersection of a loop on a surface, is a modification of a path operation introduced earlier by Turaev himself, as well as a counterpart of the Goldman bracket. In this survey based on the author's joint works with A. Alekseev, Y. Kuno and F. Naef, we review some algebraic aspects of the cobracket and its framed variants including their formal description, an application to the mapping class group of the surface and a relation to the (higher genus) Kashiwara-Vergne problem. In addition, we review a homological description of the cobracket after R. Hain.
图拉耶夫协托的几个代数方面
Turaev协括号是由V. Turaev引入的一种循环运算,用于测量表面上环路的自交,它是对Turaev自己之前引入的路径运算的改进,也是高盛括号的对应。本文基于作者与a . Alekseev, Y. Kuno和F. Naef的合著,回顾了协括号及其框架变体的代数方面,包括它们的形式描述,在曲面的映射类群中的应用以及与(高属)Kashiwara-Vergne问题的关系。此外,我们回顾了R. Hain之后的一种对协括号的同源描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信