Batch Mode Active Learning Algorithm Combining with Self-training for Multiclass Brain-computer Interfaces ?

Min-You Chen, Xuemin Tan
{"title":"Batch Mode Active Learning Algorithm Combining with Self-training for Multiclass Brain-computer Interfaces ?","authors":"Min-You Chen, Xuemin Tan","doi":"10.12733/JICS20105675","DOIUrl":null,"url":null,"abstract":"In this paper, an batch mode active learning algorithm combining with the beneflts of self-training for solving the multiclass Brain-computer Interface (BCI) problem, which initially only needs a small set of labeled samples to train classiflers. The algorithm applied active learning to select the most informative samples and self-training to select the most high confldence samples, respectively, according to the proposed novel uncertainty criterion and confldence criterion for boosting the performance of the classifler. Experiments on the Dataset 2a of the BCI Competition IV, which demonstrate our method achieves more improvement than Active Learning (AL) and Random Sampling (RS) when the same amount of human efiort is sacriflced.","PeriodicalId":213716,"journal":{"name":"The Journal of Information and Computational Science","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Information and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12733/JICS20105675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, an batch mode active learning algorithm combining with the beneflts of self-training for solving the multiclass Brain-computer Interface (BCI) problem, which initially only needs a small set of labeled samples to train classiflers. The algorithm applied active learning to select the most informative samples and self-training to select the most high confldence samples, respectively, according to the proposed novel uncertainty criterion and confldence criterion for boosting the performance of the classifler. Experiments on the Dataset 2a of the BCI Competition IV, which demonstrate our method achieves more improvement than Active Learning (AL) and Random Sampling (RS) when the same amount of human efiort is sacriflced.
结合自训练的多类脑机接口批处理主动学习算法
针对多类脑机接口(BCI)问题,提出了一种结合自训练优点的批处理模式主动学习算法,该算法最初只需要一小组标记样本来训练分类器。该算法根据提出的新的不确定性准则和置信度准则,分别采用主动学习选择信息量最大的样本和自训练选择置信度最高的样本来提高分类器的性能。在脑机接口大赛(BCI Competition IV)的数据集2a上进行的实验表明,在牺牲相同的人工工作量的情况下,我们的方法比主动学习(AL)和随机抽样(RS)取得了更大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信