Depth data filtering for real-time head pose estimation with Kinect

Qiao Ti-zhou, Dai Shu-ling
{"title":"Depth data filtering for real-time head pose estimation with Kinect","authors":"Qiao Ti-zhou, Dai Shu-ling","doi":"10.1109/CISP.2013.6745302","DOIUrl":null,"url":null,"abstract":"In order to analyze the head motion of pilots in real time and improve tracking performance, we propose a method based on the random regression forest framework to address head pose estimation from depth data captured by Kinect sensors. We present the novel Trinary Annulus Filter and implement Bilateral Filtering using CUDA to process depth data of Kinect, with the purpose of image quality improvement and minimized performance impact. We have evaluated our system on a public database, and it is proved to be more effective after depth data processing and capable of handling large and rapid head rotations, temporary and partial occlusions in performance evaluation. After head pose data are filtered by presented multiple pose estimation method, they are successfully used in flight simulation to drive the rotation of viewpoint.","PeriodicalId":442320,"journal":{"name":"2013 6th International Congress on Image and Signal Processing (CISP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2013.6745302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to analyze the head motion of pilots in real time and improve tracking performance, we propose a method based on the random regression forest framework to address head pose estimation from depth data captured by Kinect sensors. We present the novel Trinary Annulus Filter and implement Bilateral Filtering using CUDA to process depth data of Kinect, with the purpose of image quality improvement and minimized performance impact. We have evaluated our system on a public database, and it is proved to be more effective after depth data processing and capable of handling large and rapid head rotations, temporary and partial occlusions in performance evaluation. After head pose data are filtered by presented multiple pose estimation method, they are successfully used in flight simulation to drive the rotation of viewpoint.
用于Kinect实时头部姿态估计的深度数据滤波
为了实时分析飞行员的头部运动,提高跟踪性能,我们提出了一种基于随机回归森林框架的方法来解决Kinect传感器捕获深度数据的头部姿态估计问题。我们提出了一种新颖的三环滤波器,并使用CUDA实现双边滤波来处理Kinect的深度数据,以提高图像质量和最小化性能影响。我们已经在一个公共数据库上对我们的系统进行了评估,并在性能评估中证明该系统经过深度数据处理后更加有效,能够处理大而快速的头部旋转,暂时和部分闭塞。采用多姿态估计方法对头部姿态数据进行滤波后,成功应用于飞行仿真中驱动视点旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信