The Shark Attack Problem Revisited: MCMC with the Metropolis Algorithm

T. Donovan, R. Mickey
{"title":"The Shark Attack Problem Revisited: MCMC with the Metropolis Algorithm","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0013","DOIUrl":null,"url":null,"abstract":"In this chapter, the “Shark Attack Problem” (Chapter 11) is revisited. Markov Chain Monte Carlo (MCMC) is introduced as another way to determine a posterior distribution of λ‎, the mean number of shark attacks per year. The MCMC approach is so versatile that it can be used to solve almost any kind of parameter estimation problem. The chapter highlights the Metropolis algorithm in detail and illustrates its application, step by step, for the “Shark Attack Problem.” The posterior distribution generated in Chapter 11 using the gamma-Poisson conjugate is compared with the MCMC posterior distribution to show how successful the MCMC method can be. By the end of the chapter, the reader should also understand the following concepts: tuning parameter, MCMC inference, traceplot, and moment matching.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this chapter, the “Shark Attack Problem” (Chapter 11) is revisited. Markov Chain Monte Carlo (MCMC) is introduced as another way to determine a posterior distribution of λ‎, the mean number of shark attacks per year. The MCMC approach is so versatile that it can be used to solve almost any kind of parameter estimation problem. The chapter highlights the Metropolis algorithm in detail and illustrates its application, step by step, for the “Shark Attack Problem.” The posterior distribution generated in Chapter 11 using the gamma-Poisson conjugate is compared with the MCMC posterior distribution to show how successful the MCMC method can be. By the end of the chapter, the reader should also understand the following concepts: tuning parameter, MCMC inference, traceplot, and moment matching.
对鲨鱼攻击问题的重新审视:基于Metropolis算法的MCMC
在这一章中,“鲨鱼袭击问题”(第11章)被重新审视。马尔可夫链蒙特卡罗(MCMC)是另一种确定λ(每年鲨鱼袭击的平均次数)后验分布的方法。MCMC方法是如此通用,它可以用来解决几乎任何类型的参数估计问题。本章详细介绍了Metropolis算法,并一步一步地说明了它在“鲨鱼攻击问题”中的应用。将第11章中使用γ -泊松共轭生成的后验分布与MCMC后验分布进行比较,以显示MCMC方法的成功程度。在本章结束时,读者还应该理解以下概念:调优参数,MCMC推理,traceplot和矩匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信