Metadata-Based Feature Aggregation Network for Face Recognition

Nishant Sankaran, S. Tulyakov, S. Setlur, V. Govindaraju
{"title":"Metadata-Based Feature Aggregation Network for Face Recognition","authors":"Nishant Sankaran, S. Tulyakov, S. Setlur, V. Govindaraju","doi":"10.1109/ICB2018.2018.00028","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to feature aggregation for template/set based face recognition by incorporating metadata regarding face images to evaluate the representativeness of a feature in the template. We propose using orthogonal data like yaw, pitch, face size, etc. to augment the capacity of deep neural networks to find stronger correlations between the relative quality of the face image in the set with the match performance. The approach presented employs a siamese architecture for training on features and metadata generated using other state-of-the-art CNNs and learns an effective feature fusion strategy for producing optimal face verification performance. We obtain substantial improvements in TAR of over 1.5% at 10^-4 FAR as compared to traditional pooling approaches and illustrate the efficacy of the quality assessment made by the network on the two challenging datasets IJB-A and IARPA Janus CS4.","PeriodicalId":130957,"journal":{"name":"2018 International Conference on Biometrics (ICB)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB2018.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a novel approach to feature aggregation for template/set based face recognition by incorporating metadata regarding face images to evaluate the representativeness of a feature in the template. We propose using orthogonal data like yaw, pitch, face size, etc. to augment the capacity of deep neural networks to find stronger correlations between the relative quality of the face image in the set with the match performance. The approach presented employs a siamese architecture for training on features and metadata generated using other state-of-the-art CNNs and learns an effective feature fusion strategy for producing optimal face verification performance. We obtain substantial improvements in TAR of over 1.5% at 10^-4 FAR as compared to traditional pooling approaches and illustrate the efficacy of the quality assessment made by the network on the two challenging datasets IJB-A and IARPA Janus CS4.
基于元数据的人脸识别特征聚合网络
本文提出了一种新的基于模板/集合的人脸识别特征聚合方法,通过结合人脸图像的元数据来评估模板中特征的代表性。我们建议使用偏航、俯仰、人脸大小等正交数据来增强深度神经网络的能力,以发现集合中人脸图像的相对质量与匹配性能之间更强的相关性。该方法采用siamese架构来训练使用其他最先进的cnn生成的特征和元数据,并学习有效的特征融合策略以产生最佳的人脸验证性能。与传统的池化方法相比,我们在10^-4 FAR下获得了超过1.5%的显著改进,并说明了网络在两个具有挑战性的数据集ij - a和IARPA Janus CS4上进行的质量评估的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信