Intersection-based Spatial Annotation of Trajectories with Linked Data

T. P. Nogueira, H. Martin, Rossana M. C. Andrade
{"title":"Intersection-based Spatial Annotation of Trajectories with Linked Data","authors":"T. P. Nogueira, H. Martin, Rossana M. C. Andrade","doi":"10.5753/wbci.2019.6750","DOIUrl":null,"url":null,"abstract":"Smart cities are characterized by providing new services through Information and Communications Technologies. However, it is important to gather data from citizens to discover new knowledge about certain aspects of a city. One example of a rich domain for collecting data in a smart city is exploring the use of mobile fitness applications. Users usually record outdoor activities in the form of trajectories, which can later be acquired for further analysis. In this work, we leverage Semantic Web technologies to propose an annotation algorithm that segments trajectories according to their spatial context. We demonstrate how the method works and the impact of OpenStreetMap related ontologies in the annotation process.","PeriodicalId":218600,"journal":{"name":"Anais do Workshop Brasileiro de Cidades Inteligentes (WBCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Workshop Brasileiro de Cidades Inteligentes (WBCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wbci.2019.6750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Smart cities are characterized by providing new services through Information and Communications Technologies. However, it is important to gather data from citizens to discover new knowledge about certain aspects of a city. One example of a rich domain for collecting data in a smart city is exploring the use of mobile fitness applications. Users usually record outdoor activities in the form of trajectories, which can later be acquired for further analysis. In this work, we leverage Semantic Web technologies to propose an annotation algorithm that segments trajectories according to their spatial context. We demonstrate how the method works and the impact of OpenStreetMap related ontologies in the annotation process.
基于交点的关联数据轨迹空间标注
智慧城市的特点是通过信息和通信技术提供新的服务。然而,从市民那里收集数据以发现关于城市某些方面的新知识是很重要的。在智慧城市中收集数据的一个丰富领域是探索移动健身应用程序的使用。用户通常以轨迹的形式记录户外活动,以后可以获得这些轨迹以作进一步分析。在这项工作中,我们利用语义网技术提出了一种注释算法,该算法根据空间上下文对轨迹进行分段。我们演示了该方法是如何工作的,以及OpenStreetMap相关本体在注释过程中的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信