Windowed Bernoulli Mixture HMMs for Arabic Handwritten Word Recognition

Adrià Giménez, Ihab Khoury, Alfons Juan-Císcar
{"title":"Windowed Bernoulli Mixture HMMs for Arabic Handwritten Word Recognition","authors":"Adrià Giménez, Ihab Khoury, Alfons Juan-Císcar","doi":"10.1109/ICFHR.2010.88","DOIUrl":null,"url":null,"abstract":"Hidden Markov Models (HMMs) are now widely used in off-line handwriting recognition and, in particular, in Arabic handwritten word recognition. In contrast to the conventional approach, based on Gaussian mixture HMMs, we have recently proposed to directly fed columns of raw, binary pixels into Bernoulli mixture HMMs. In this work, column bit vectors are extended by means of a sliding window of adequate width to better capture image context at each horizontal position of the word image. Using these windowed Bernoulli mixture HMMs, very good results are reported on the well-known IfN/ENIT database of Arabic handwritten Tunisian town names.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Hidden Markov Models (HMMs) are now widely used in off-line handwriting recognition and, in particular, in Arabic handwritten word recognition. In contrast to the conventional approach, based on Gaussian mixture HMMs, we have recently proposed to directly fed columns of raw, binary pixels into Bernoulli mixture HMMs. In this work, column bit vectors are extended by means of a sliding window of adequate width to better capture image context at each horizontal position of the word image. Using these windowed Bernoulli mixture HMMs, very good results are reported on the well-known IfN/ENIT database of Arabic handwritten Tunisian town names.
带窗的伯努利混合hmm用于阿拉伯语手写单词识别
隐马尔可夫模型(hmm)目前广泛应用于离线手写识别,特别是在阿拉伯语手写单词识别中。与基于高斯混合hmm的传统方法相反,我们最近提出直接将原始二进制像素列输入伯努利混合hmm。在这项工作中,通过适当宽度的滑动窗口扩展列位向量,以便更好地捕获单词图像的每个水平位置的图像上下文。使用这些带窗口的伯努利混合hmm,在著名的IfN/ENIT阿拉伯手写突尼斯城镇名称数据库中报告了非常好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信