Facial Expression Recognition Using Convolution Neural Network Fusion and Texture Descriptors Representation

Chebah Ouafa, M. Laskri
{"title":"Facial Expression Recognition Using Convolution Neural Network Fusion and Texture Descriptors Representation","authors":"Chebah Ouafa, M. Laskri","doi":"10.1142/s146902682250002x","DOIUrl":null,"url":null,"abstract":"Facial expression recognition is an interesting research direction of pattern recognition and computer vision. It has been increasingly used in artificial intelligence, human–computer interaction and security monitoring. In recent years, Convolution Neural Network (CNN) as a deep learning technique and multiple classifier combination method has been applied to gain accurate results in classifying face expressions. In this paper, we propose a multimodal classification approach based on a local texture descriptor representation and a combination of CNN to recognize facial expression. Initially, in order to reduce the influence of redundant information, the preprocessing stage is performed using face detection, face image cropping and texture descriptors of Local Binary Pattern (LBP), Local Gradient Code (LGC), Local Directional Pattern (LDP) and Gradient Direction Pattern (GDP) calculation. Second, we construct a cascade CNN architecture using the multimodal data of each descriptor (CNNLBP, CNNLGC, CNNGDP and CNNLDP) to extract facial features and classify emotions. Finally, we apply aggregation techniques (sum and product rule) for each modality to combine the four multimodal outputs and thus obtain the final decision of our system. Experimental results using CK[Formula: see text] and JAFFE database show that the proposed multimodal classification system achieves superior recognition performance compared to the existing studies with classification accuracy of 97, 93% and 94, 45%, respectively.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s146902682250002x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Facial expression recognition is an interesting research direction of pattern recognition and computer vision. It has been increasingly used in artificial intelligence, human–computer interaction and security monitoring. In recent years, Convolution Neural Network (CNN) as a deep learning technique and multiple classifier combination method has been applied to gain accurate results in classifying face expressions. In this paper, we propose a multimodal classification approach based on a local texture descriptor representation and a combination of CNN to recognize facial expression. Initially, in order to reduce the influence of redundant information, the preprocessing stage is performed using face detection, face image cropping and texture descriptors of Local Binary Pattern (LBP), Local Gradient Code (LGC), Local Directional Pattern (LDP) and Gradient Direction Pattern (GDP) calculation. Second, we construct a cascade CNN architecture using the multimodal data of each descriptor (CNNLBP, CNNLGC, CNNGDP and CNNLDP) to extract facial features and classify emotions. Finally, we apply aggregation techniques (sum and product rule) for each modality to combine the four multimodal outputs and thus obtain the final decision of our system. Experimental results using CK[Formula: see text] and JAFFE database show that the proposed multimodal classification system achieves superior recognition performance compared to the existing studies with classification accuracy of 97, 93% and 94, 45%, respectively.
基于卷积神经网络融合和纹理描述符表示的面部表情识别
面部表情识别是模式识别和计算机视觉的一个有趣的研究方向。它在人工智能、人机交互和安全监控方面的应用越来越广泛。近年来,卷积神经网络(CNN)作为一种深度学习技术和多分类器组合方法被应用于人脸表情分类中,以获得准确的分类结果。在本文中,我们提出了一种基于局部纹理描述符表示和CNN相结合的多模态分类方法来识别面部表情。首先,为了减少冗余信息的影响,采用人脸检测、人脸图像裁剪和纹理描述符局部二值模式(LBP)、局部梯度码(LGC)、局部方向模式(LDP)和梯度方向模式(GDP)计算进行预处理。其次,利用每个描述符(CNNLBP、CNNLGC、CNNGDP和CNNLDP)的多模态数据构建级联CNN架构,提取面部特征并对情绪进行分类。最后,我们对每个模态应用聚合技术(和积规则)将四个多模态输出组合起来,从而获得我们系统的最终决策。使用CK[公式:见文]和JAFFE数据库的实验结果表明,与现有研究相比,本文提出的多模态分类系统的识别性能更好,分类准确率分别为97.93%和94.45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信