Air Pollution Hotspot Identification and Pollution Level Prediction in the City of Delhi

Soumyadeep Sur, Rohit Ghosal, Rittik Mondal
{"title":"Air Pollution Hotspot Identification and Pollution Level Prediction in the City of Delhi","authors":"Soumyadeep Sur, Rohit Ghosal, Rittik Mondal","doi":"10.1109/ICCE50343.2020.9290698","DOIUrl":null,"url":null,"abstract":"In this paper, we use various methods and algorithms to detect air pollution hotspots and predict pollution levels in a selected area in the city of Delhi. Time series AQI data is collected through the CPCB sensors in Delhi. Classification of hotspots is done using SVM, and the time series analysis based on pollutants like PM2.5, PM10, CO, NO data samples is done using LSTM and PROPHET. Pollution levels of a day in the future are predicted using the said models.","PeriodicalId":421963,"journal":{"name":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE50343.2020.9290698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we use various methods and algorithms to detect air pollution hotspots and predict pollution levels in a selected area in the city of Delhi. Time series AQI data is collected through the CPCB sensors in Delhi. Classification of hotspots is done using SVM, and the time series analysis based on pollutants like PM2.5, PM10, CO, NO data samples is done using LSTM and PROPHET. Pollution levels of a day in the future are predicted using the said models.
德里市空气污染热点识别与污染水平预测
在本文中,我们使用各种方法和算法来检测空气污染热点,并预测德里市选定地区的污染水平。时间序列的空气质量数据是通过德里的CPCB传感器收集的。使用SVM对热点进行分类,使用LSTM和PROPHET对PM2.5、PM10、CO、NO等污染物数据样本进行时间序列分析。使用上述模型预测未来一天的污染水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信