Distributed program checking: a paradigm for building self-stabilizing distributed protocols

B. Awerbuch, G. Varghese
{"title":"Distributed program checking: a paradigm for building self-stabilizing distributed protocols","authors":"B. Awerbuch, G. Varghese","doi":"10.1109/SFCS.1991.185377","DOIUrl":null,"url":null,"abstract":"The notion of distributed program checking as a means of making a distributed algorithm self-stabilizing is explored. A compiler that converts a deterministic synchronous protocol pi for static networks into a self-stabilizing version of pi for dynamic networks is described. If T/sub pi / is the time complexity of pi and D is a bound on the diameter of the final network, the compiled version of pi stabilizes in time O(D+T/sub pi /) and has the same space complexity as pi . The general method achieves efficient results for many specific noninteractive tasks. For instance, solutions for the shortest paths and spanning tree problems take O(D) to stabilize, an improvement over the previous best time of O(D/sup 2/).<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"176","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 176

Abstract

The notion of distributed program checking as a means of making a distributed algorithm self-stabilizing is explored. A compiler that converts a deterministic synchronous protocol pi for static networks into a self-stabilizing version of pi for dynamic networks is described. If T/sub pi / is the time complexity of pi and D is a bound on the diameter of the final network, the compiled version of pi stabilizes in time O(D+T/sub pi /) and has the same space complexity as pi . The general method achieves efficient results for many specific noninteractive tasks. For instance, solutions for the shortest paths and spanning tree problems take O(D) to stabilize, an improvement over the previous best time of O(D/sup 2/).<>
分布式程序检查:构建自稳定分布式协议的范例
探讨了分布式程序检查作为一种使分布式算法自稳定的方法。描述了一种编译器,它将用于静态网络的确定性同步协议pi转换为用于动态网络的自稳定版本pi。如果T/下标pi /是pi的时间复杂度,D是最终网络直径的一个界,则编译后的pi在O(D+T/下标pi /)时间内趋于稳定,并且具有与pi相同的空间复杂度。对于许多特定的非交互任务,一般方法可以获得有效的结果。例如,最短路径和生成树问题的解需要O(D)来稳定,这比之前的最佳时间O(D/sup 2/)有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信