Proof Systems for 3-valued Logics Based on Gödel's Implication

A. Avron
{"title":"Proof Systems for 3-valued Logics Based on Gödel's Implication","authors":"A. Avron","doi":"10.1093/JIGPAL/JZAB013","DOIUrl":null,"url":null,"abstract":"\n The logic $G3^{<}_{{{}^{\\scriptsize{-}}}\\!\\!\\textrm{L}}$ was introduced in Robles and Mendéz (2014, Logic Journal of the IGPL, 22, 515–538) as a paraconsistent logic which is based on Gödel’s 3-valued matrix, except that Kleene–Łukasiewicz’s negation is added to the language and is used as the main negation connective. We show that $G3^{<}_{{{}^{\\scriptsize{-}}}\\!\\!\\textrm{L}}$ is exactly the intersection of $G3^{\\{1\\}}_{{{}^{\\scriptsize{-}}}\\!\\!\\textrm{L}}$ and $G3^{\\{1,0.5\\}}_{{{}^{\\scriptsize{-}}}\\!\\!\\textrm{L}}$, the two truth-preserving 3-valued logics which are based on the same truth tables. (In $G3^{\\{1\\}}_{{{}^{\\scriptsize{-}}}\\!\\!\\textrm{L}}$ the set ${\\cal D}$ of designated elements is $\\{1\\}$, while in $G3^{\\{1,0.5\\}}_{{{}^{\\scriptsize{-}}}\\!\\!\\textrm{L}}$  ${\\cal D}=\\{1,0.5\\}$.) We then construct a Hilbert-type system which has (MP) for $\\to $ as its sole rule of inference, and is strongly sound and complete for $G3^{<}_{{{}^{\\scriptsize{-}}}\\!\\!\\textrm{L}}$. Then we show how, by adding one axiom (in the case of $G3^{\\{1\\}}_{{{}^{\\scriptsize{-}}}\\!\\!\\textrm{L}}$) or one new rule of inference (in the case of $G3^{\\{1,0.5\\}}_{{{}^{\\scriptsize{-}}}\\!\\!\\textrm{L}}$), we get strongly sound and complete systems for $G3^{\\{1\\}}_{{{}^{\\scriptsize{-}}}\\!\\!\\textrm{L}}$ and $G3^{\\{1,0.5\\}}_{{{}^{\\scriptsize{-}}}\\!\\!\\textrm{L}}$. Finally, we provide quasi-canonical Gentzen-type systems which are sound and complete for those logics and show that they are all analytic, by proving the cut-elimination theorem for them.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JIGPAL/JZAB013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The logic $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ was introduced in Robles and Mendéz (2014, Logic Journal of the IGPL, 22, 515–538) as a paraconsistent logic which is based on Gödel’s 3-valued matrix, except that Kleene–Łukasiewicz’s negation is added to the language and is used as the main negation connective. We show that $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ is exactly the intersection of $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ and $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$, the two truth-preserving 3-valued logics which are based on the same truth tables. (In $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ the set ${\cal D}$ of designated elements is $\{1\}$, while in $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$  ${\cal D}=\{1,0.5\}$.) We then construct a Hilbert-type system which has (MP) for $\to $ as its sole rule of inference, and is strongly sound and complete for $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$. Then we show how, by adding one axiom (in the case of $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$) or one new rule of inference (in the case of $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$), we get strongly sound and complete systems for $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ and $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$. Finally, we provide quasi-canonical Gentzen-type systems which are sound and complete for those logics and show that they are all analytic, by proving the cut-elimination theorem for them.
基于Gödel蕴涵的3值逻辑证明系统
逻辑$G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$在Robles和mend宇航兹(2014,Logic Journal of the IGPL, 22, 515-538)中作为一种基于Gödel的三值矩阵的副一致逻辑被引入,除了Kleene -Łukasiewicz的否定被添加到语言中并被用作主否定连接。我们显示$G3^{<}_{{{}^{\scriptsize{-}}}\!\!\ textrm {L}}就是美元的交集G3 $ ^ {\ {1 \}}_{{{}^{\ scriptsize {-}}} \ \ !G3 \ textrm {L}} $和$ ^ {\ {1,0.5 \}}_{{{}^{\ scriptsize {-}}} \ \ !\textrm{L}}$,两个基于相同真值表的保真三值逻辑。G3 ($ ^ {\ {1 \}}_{{{}^{\ scriptsize {-}}} \ \ !集美元\ textrm {L}}{\卡尔维}指定元素的美元是\ \{1},美元在G3 $ ^ {\ {1, 0.5 \}}_{{{}^{\ scriptsize {-}}} \ \ !\textrm{L}}$ ${\cal D}=\{1,0.5\}$.)然后,我们构造了一个hilbert型系统,该系统的唯一推理规则是(MP),并且对于$G3^{<}_{{{}}^{\scriptsize{-}}}\!\!\textrm{L}}$是强健全和完备的。然后我们展示,通过添加一个公理G3(在$ ^ {\ {1 \}}_{{{}^{\ scriptsize {-}}}\!\!\ textrm {L}} $)或一个新规则的推理G3(在$ ^ {\ {1,0.5 \}}_{{{}^{\ scriptsize {-}}}\!\!\ textrm {L}} $),我们得到强烈的声音和G3成套系统$ ^ {\ {1 \}}_{{{}^{\ scriptsize {-}}} \ \ !G3 \ textrm {L}} $和$ ^ {\ {1,0.5 \}}_{{{}^{\ scriptsize {-}}}\!\!\ textrm {L}} $。最后,通过对这些逻辑的切消定理的证明,给出了它们的完备完备的准正则根岑型系统,并证明了它们都是解析的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信