An Improved Medical Image Fusion Method Based on PCNN in NSST Domain

Zhiying Song, Huiyan Jiang, Siqi Li
{"title":"An Improved Medical Image Fusion Method Based on PCNN in NSST Domain","authors":"Zhiying Song, Huiyan Jiang, Siqi Li","doi":"10.1109/ICVRV.2017.00114","DOIUrl":null,"url":null,"abstract":"We present a novel fusion method based on improved pulse-coupled neural networks (PCNN) model in non-subsampled shearlet transform (NSST) domain for wholebody PET/CT images. Firstly, source images are decomposed using NSST into one low-pass sub-band and several highpass sub-bands. Then, an improved PCNN is used in highpass sub-bands where energy of edge and average gradient are as external input and linking strength respectively. Maximum region energy (MRE) and maximum selection (MS) rules are as fusion rules for high-and low-pass sub-bands respectively. Finally, inverse NSST is adopted to produce fused result. Experiments show the superiority of our method.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a novel fusion method based on improved pulse-coupled neural networks (PCNN) model in non-subsampled shearlet transform (NSST) domain for wholebody PET/CT images. Firstly, source images are decomposed using NSST into one low-pass sub-band and several highpass sub-bands. Then, an improved PCNN is used in highpass sub-bands where energy of edge and average gradient are as external input and linking strength respectively. Maximum region energy (MRE) and maximum selection (MS) rules are as fusion rules for high-and low-pass sub-bands respectively. Finally, inverse NSST is adopted to produce fused result. Experiments show the superiority of our method.
一种改进的NSST域PCNN医学图像融合方法
提出了一种基于改进脉冲耦合神经网络(PCNN)模型的全身PET/CT图像非下采样shearlet变换(NSST)域融合方法。首先,利用NSST将源图像分解为一个低通子带和多个高通子带;然后,在以边缘能量和平均梯度能量分别作为外部输入和连接强度的高通子带中使用改进的PCNN。最大区域能量规则(MRE)和最大选择规则(MS)分别作为高通和低通子带的融合规则。最后,采用逆NSST得到融合结果。实验证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信