Privacy Preserving Data Analytics for Smart Homes

Antorweep Chakravorty, T. Wlodarczyk, Chunming Rong
{"title":"Privacy Preserving Data Analytics for Smart Homes","authors":"Antorweep Chakravorty, T. Wlodarczyk, Chunming Rong","doi":"10.1109/SPW.2013.22","DOIUrl":null,"url":null,"abstract":"A framework for maintaining security & preserving privacy for analysis of sensor data from smart homes, without compromising on data utility is presented. Storing the personally identifiable data as hashed values withholds identifiable information from any computing nodes. However the very nature of smart home data analytics is establishing preventive care. Data processing results should be identifiable to certain users responsible for direct care. Through a separate encrypted identifier dictionary with hashed and actual values of all unique sets of identifiers, we suggest re-identification of any data processing results. However the level of re-identification needs to be controlled, depending on the type of user accessing the results. Generalization and suppression on identifiers from the identifier dictionary before re-introduction could achieve different levels of privacy preservation. In this paper we propose an approach to achieve data security & privacy through out the complete data lifecycle: data generation/collection, transfer, storage, processing and sharing.","PeriodicalId":383569,"journal":{"name":"2013 IEEE Security and Privacy Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Security and Privacy Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2013.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

A framework for maintaining security & preserving privacy for analysis of sensor data from smart homes, without compromising on data utility is presented. Storing the personally identifiable data as hashed values withholds identifiable information from any computing nodes. However the very nature of smart home data analytics is establishing preventive care. Data processing results should be identifiable to certain users responsible for direct care. Through a separate encrypted identifier dictionary with hashed and actual values of all unique sets of identifiers, we suggest re-identification of any data processing results. However the level of re-identification needs to be controlled, depending on the type of user accessing the results. Generalization and suppression on identifiers from the identifier dictionary before re-introduction could achieve different levels of privacy preservation. In this paper we propose an approach to achieve data security & privacy through out the complete data lifecycle: data generation/collection, transfer, storage, processing and sharing.
智能家居的隐私保护数据分析
提出了一种框架,用于维护来自智能家居的传感器数据分析的安全性和隐私性,同时不影响数据效用。将个人可识别的数据存储为散列值,可以从任何计算节点中保留可识别的信息。然而,智能家居数据分析的本质是建立预防保健。数据处理的结果应该能够被某些负责直接护理的用户识别。通过一个单独的加密标识符字典,其中包含所有唯一标识符集的散列值和实际值,我们建议对任何数据处理结果进行重新标识。但是,需要根据访问结果的用户类型来控制重新识别的级别。在重新引入标识符之前,对标识符字典中的标识符进行泛化和抑制,可以实现不同程度的隐私保护。在本文中,我们提出了一种通过数据生成/收集、传输、存储、处理和共享的整个数据生命周期来实现数据安全和隐私的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信