Maximum Variance-based EEG Time Bin Selection for Decoding of Imagined Hand Movement Directions in Brain Computer Interface

Sagila Gangadharan K, Benzy V. K, A. Vinod
{"title":"Maximum Variance-based EEG Time Bin Selection for Decoding of Imagined Hand Movement Directions in Brain Computer Interface","authors":"Sagila Gangadharan K, Benzy V. K, A. Vinod","doi":"10.1109/BioSMART54244.2021.9677887","DOIUrl":null,"url":null,"abstract":"Motor-Imagery-based Brain Computer Interface (MI-BCI) decodes the parameters of imagined motor movement and translates it into control commands to the external world. It has potential applications in neurorehabilitation and development of assistive technology. This paper investigates the Electroencephalogram (EEG) correlates of direction parameters of a center-out hand movement imagination task in right and left directions. A variance-based time bin selection algorithm is proposed to select the most discriminative EEG time segment for directional classification of movement imagination. The discriminative EEG features carrying motor imagery (MI) directional information are extracted from the selected EEG time segment using the wavelet-common spatial pattern (WCSP) algorithm. The WCSP features are classified using Support Vector Machine classifier resulting in a cross validated classification accuracy of 71% between left versus right MI directions of 15 subjects.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Motor-Imagery-based Brain Computer Interface (MI-BCI) decodes the parameters of imagined motor movement and translates it into control commands to the external world. It has potential applications in neurorehabilitation and development of assistive technology. This paper investigates the Electroencephalogram (EEG) correlates of direction parameters of a center-out hand movement imagination task in right and left directions. A variance-based time bin selection algorithm is proposed to select the most discriminative EEG time segment for directional classification of movement imagination. The discriminative EEG features carrying motor imagery (MI) directional information are extracted from the selected EEG time segment using the wavelet-common spatial pattern (WCSP) algorithm. The WCSP features are classified using Support Vector Machine classifier resulting in a cross validated classification accuracy of 71% between left versus right MI directions of 15 subjects.
基于最大方差的脑机接口想象手部运动方向的EEG时间Bin选择
基于运动图像的脑机接口(MI-BCI)对想象的运动参数进行解码,并将其转化为对外部世界的控制命令。它在神经康复和辅助技术开发方面具有潜在的应用前景。研究了手向外运动想象任务在左右两个方向上的方向参数的脑电图相关关系。提出了一种基于方差的时间bin选择算法,选择最具判别性的脑电信号时间片段进行运动想象的定向分类。采用小波-公共空间模式(WCSP)算法,从选取的脑电时间片段中提取带有运动意象(MI)方向信息的判别性脑电特征。使用支持向量机分类器对WCSP特征进行分类,导致15个受试者的左右MI方向的交叉验证分类准确率为71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信