Patrick Cheridito, P. Patie, A. Srapionyan, A. Vaidyanathan
{"title":"On non-local ergodic Jacobi semigroups: spectral theory, convergence-to-equilibrium and contractivity","authors":"Patrick Cheridito, P. Patie, A. Srapionyan, A. Vaidyanathan","doi":"10.5802/JEP.148","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce and study non-local Jacobi operators, which generalize the classical (local) Jacobi operator. We show that these operators extend to the generator of an ergodic Markov semigroup with a unique invariant probability measure and study its spectral and convergence properties. In particular, we give a series expansion of the semigroup in terms of explicitly defined polynomials, which are counterparts of the classical Jacobi orthogonal polynomials. In addition, we give a complete characterization of the spectrum of the non-self-adjoint generator and semigroup. We show that the variance decay of the semigroup is hypocoercive with explicit constants, which provides a natural generalization of the spectral gap estimate. After a random warm-up time, the semigroup also decays exponentially in entropy and is both hypercontractive and ultracontractive. Our proofs hinge on the development of commutation identities, known as intertwining relations, between local and non-local Jacobi operators/semigroups, with the local Jacobi operator/semigroup serving as a reference object for transferring properties to the non-local ones.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, we introduce and study non-local Jacobi operators, which generalize the classical (local) Jacobi operator. We show that these operators extend to the generator of an ergodic Markov semigroup with a unique invariant probability measure and study its spectral and convergence properties. In particular, we give a series expansion of the semigroup in terms of explicitly defined polynomials, which are counterparts of the classical Jacobi orthogonal polynomials. In addition, we give a complete characterization of the spectrum of the non-self-adjoint generator and semigroup. We show that the variance decay of the semigroup is hypocoercive with explicit constants, which provides a natural generalization of the spectral gap estimate. After a random warm-up time, the semigroup also decays exponentially in entropy and is both hypercontractive and ultracontractive. Our proofs hinge on the development of commutation identities, known as intertwining relations, between local and non-local Jacobi operators/semigroups, with the local Jacobi operator/semigroup serving as a reference object for transferring properties to the non-local ones.