Profinite Rigidity, Fibering, and the Figure-Eight Knot

M. Bridson, A. Reid
{"title":"Profinite Rigidity, Fibering, and the Figure-Eight Knot","authors":"M. Bridson, A. Reid","doi":"10.1515/9780691185897-004","DOIUrl":null,"url":null,"abstract":"We establish results concerning the profinite completions of 3-manifold groups. In particular, we prove that the complement of the figure-eight knot $S^3-K$ is distinguished from all other compact 3-manifolds by the set of finite quotients of its fundamental group. In addition, we show that if $M$ is a compact 3-manifold with $b_1(M)=1$, and $\\pi_1(M)$ has the same finite quotients as a free-by-cyclic group $F_r\\rtimes\\mathbb{Z}$, then $M$ has non-empty boundary, fibres over the circle with compact fibre, and $\\pi_1(M)\\cong F_r\\rtimes_\\psi\\mathbb{Z}$ for some $\\psi\\in{\\rm{Out}}(F_r)$.","PeriodicalId":404905,"journal":{"name":"What's Next?","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"What's Next?","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9780691185897-004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We establish results concerning the profinite completions of 3-manifold groups. In particular, we prove that the complement of the figure-eight knot $S^3-K$ is distinguished from all other compact 3-manifolds by the set of finite quotients of its fundamental group. In addition, we show that if $M$ is a compact 3-manifold with $b_1(M)=1$, and $\pi_1(M)$ has the same finite quotients as a free-by-cyclic group $F_r\rtimes\mathbb{Z}$, then $M$ has non-empty boundary, fibres over the circle with compact fibre, and $\pi_1(M)\cong F_r\rtimes_\psi\mathbb{Z}$ for some $\psi\in{\rm{Out}}(F_r)$.
超刚度、纤维和八字结
建立了关于3流形群无穷补全的一些结果。特别地,我们证明了数字8结$S^3-K$的补与所有其他紧3流形的区别在于它的基本群的有限商集。此外,我们证明了如果$M$与$b_1(M)=1$是紧致的3流形,并且$\pi_1(M)$与自由环群$F_r\rtimes\mathbb{Z}$具有相同的有限商,则$M$具有非空边界,圆上的纤维具有紧致纤维,对于某些$\psi\in{\rm{Out}}(F_r)$具有$\pi_1(M)\cong F_r\rtimes_\psi\mathbb{Z}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信