A rough fuzzy neural networks model with application to financial risk early-warning

Huang Fuyuan
{"title":"A rough fuzzy neural networks model with application to financial risk early-warning","authors":"Huang Fuyuan","doi":"10.1109/ICCWAMTIP.2014.7073376","DOIUrl":null,"url":null,"abstract":"To overcome the curse of dimensionality, Arough fuzzy neural networks (RFNN) model was proposed in this paper, which combined the rough set theory (RST) and fuzzy neural networks (FNN). First, the models' input indices (such as financial ratios, qualitative variables et.al.) were reduced with no information loss through rough set approach. And then data based on the reduced indices was employed to develop fuzzy rules and train the fuzzy neural networks (FNN). The new model, which has advantages of both rough set approach and fuzzy neural networks, can not only avoid curse of dimensionality but also prevent “BlackBox” syndrome. The simulation result indicates that the predictive accuracy of the model is much higher. Furthermore, it has characteristics of simple structure, fast convergence speed, and stronger generalization ability etc.","PeriodicalId":211273,"journal":{"name":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2014.7073376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To overcome the curse of dimensionality, Arough fuzzy neural networks (RFNN) model was proposed in this paper, which combined the rough set theory (RST) and fuzzy neural networks (FNN). First, the models' input indices (such as financial ratios, qualitative variables et.al.) were reduced with no information loss through rough set approach. And then data based on the reduced indices was employed to develop fuzzy rules and train the fuzzy neural networks (FNN). The new model, which has advantages of both rough set approach and fuzzy neural networks, can not only avoid curse of dimensionality but also prevent “BlackBox” syndrome. The simulation result indicates that the predictive accuracy of the model is much higher. Furthermore, it has characteristics of simple structure, fast convergence speed, and stronger generalization ability etc.
粗糙模糊神经网络模型在金融风险预警中的应用
为了克服维数的困扰,本文将粗糙集理论(RST)与模糊神经网络(FNN)相结合,提出了Arough模糊神经网络(RFNN)模型。首先,通过粗糙集方法对模型的输入指标(如财务比率、定性变量等)进行约简,没有信息损失。然后利用基于约简指标的数据建立模糊规则并训练模糊神经网络。该模型结合了粗糙集方法和模糊神经网络的优点,既避免了维数诅咒,又避免了“黑盒子”综合征。仿真结果表明,该模型具有较高的预测精度。此外,它还具有结构简单、收敛速度快、泛化能力强等特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信