{"title":"Development of cellular neural network algorithm for detecting lung cancer symptoms","authors":"A. Abdullah, Hasdiana Mohamaddiah","doi":"10.1109/IECBES.2010.5742216","DOIUrl":null,"url":null,"abstract":"Lung cancer is the most common of lethal types of cancer. One of the most important and difficult tasks a doctor has to carry out is the detection and diagnosis of cancerous lung nodules from x-ray image's result. Some of these lesions may not be detected because of camouflaged by the underlying anatomical structure, the low-quality of the images or the subjective and variable decision criteria used by doctors. Hence, a detection system using cellular neural network (CNN) is developed in order to help the doctors to recognize the doubtful lung cancer regions in x-ray films. In this study, a CNN algorithm for detecting the boundary and area of lung cancer in x-ray image has been proposed. Computer simulation result shows that our CNN algorithm is verified to detect some key lung cancer symptoms successfully and has been proved by radiologist.","PeriodicalId":241343,"journal":{"name":"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES.2010.5742216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Lung cancer is the most common of lethal types of cancer. One of the most important and difficult tasks a doctor has to carry out is the detection and diagnosis of cancerous lung nodules from x-ray image's result. Some of these lesions may not be detected because of camouflaged by the underlying anatomical structure, the low-quality of the images or the subjective and variable decision criteria used by doctors. Hence, a detection system using cellular neural network (CNN) is developed in order to help the doctors to recognize the doubtful lung cancer regions in x-ray films. In this study, a CNN algorithm for detecting the boundary and area of lung cancer in x-ray image has been proposed. Computer simulation result shows that our CNN algorithm is verified to detect some key lung cancer symptoms successfully and has been proved by radiologist.