{"title":"Adaptation and Evaluation of Recommendations for Short-term Shopping Goals","authors":"D. Jannach, Lukas Lerche, Michael Jugovac","doi":"10.1145/2792838.2800176","DOIUrl":null,"url":null,"abstract":"An essential characteristic in many e-commerce settings is that website visitors can have very specific short-term shopping goals when they browse the site. Relying solely on long-term user models that are pre-trained on historical data can therefore be insufficient for a suitable next-basket recommendation. Simple \"real-time\" recommendation approaches based, e.g., on unpersonalized co-occurrence patterns, on the other hand do not fully exploit the available information about the user's long-term preference profile. In this work, we aim to explore and quantify the effectiveness of using and combining long-term models and short-term adaptation strategies. We conducted an empirical evaluation based on a novel evaluation design and two real-world datasets. The results indicate that maintaining short-term content-based and recency-based profiles of the visitors can lead to significant accuracy increases. At the same time, the experiments show that the choice of the algorithm for learning the long-term preferences is particularly important at the beginning of new shopping sessions.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2800176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103
Abstract
An essential characteristic in many e-commerce settings is that website visitors can have very specific short-term shopping goals when they browse the site. Relying solely on long-term user models that are pre-trained on historical data can therefore be insufficient for a suitable next-basket recommendation. Simple "real-time" recommendation approaches based, e.g., on unpersonalized co-occurrence patterns, on the other hand do not fully exploit the available information about the user's long-term preference profile. In this work, we aim to explore and quantify the effectiveness of using and combining long-term models and short-term adaptation strategies. We conducted an empirical evaluation based on a novel evaluation design and two real-world datasets. The results indicate that maintaining short-term content-based and recency-based profiles of the visitors can lead to significant accuracy increases. At the same time, the experiments show that the choice of the algorithm for learning the long-term preferences is particularly important at the beginning of new shopping sessions.