Reuse of video annotations based on low-level descriptor similarity

M. Cordeiro, Cristina Ribeiro
{"title":"Reuse of video annotations based on low-level descriptor similarity","authors":"M. Cordeiro, Cristina Ribeiro","doi":"10.1109/WIAMIS.2009.5031466","DOIUrl":null,"url":null,"abstract":"The paper proposes a mixed annotation approach that exploits the advantages of both automatic and manual annotation techniques. Annotated multimedia material is regarded as a source of low- to high-level feature mappings supporting the propagation of annotations to new multimedia material. Video analysis tools do not currently produce effective annotations for retrieval, while manual annotation is expensive. The proposed approach uses low-level feature similarity to guide the retrieval of keyword annotations and aims to preserve the high quality of manual annotations while reducing the time and cost per annotated video unit. The annotation tool assists users, suggesting keywords for an item that come from similar items according to low-level descriptors. The effectiveness of current descriptors has been evaluated in an experimental environment using 5 video collections and a set of MPEG-7 descriptors. The similarity results have been compared to manually evaluated similarity.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper proposes a mixed annotation approach that exploits the advantages of both automatic and manual annotation techniques. Annotated multimedia material is regarded as a source of low- to high-level feature mappings supporting the propagation of annotations to new multimedia material. Video analysis tools do not currently produce effective annotations for retrieval, while manual annotation is expensive. The proposed approach uses low-level feature similarity to guide the retrieval of keyword annotations and aims to preserve the high quality of manual annotations while reducing the time and cost per annotated video unit. The annotation tool assists users, suggesting keywords for an item that come from similar items according to low-level descriptors. The effectiveness of current descriptors has been evaluated in an experimental environment using 5 video collections and a set of MPEG-7 descriptors. The similarity results have been compared to manually evaluated similarity.
基于低级描述符相似度的视频注释重用
本文提出了一种混合标注方法,该方法充分利用了自动标注技术和手动标注技术的优点。注释多媒体材料被认为是支持将注释传播到新多媒体材料的从低到高的特征映射的来源。视频分析工具目前不能产生有效的检索注释,而手动注释的成本很高。该方法利用低级特征相似度来指导关键字标注的检索,旨在保持手工标注的高质量,同时减少每个标注视频单元的时间和成本。注释工具为用户提供帮助,根据低级描述符为来自类似项目的项目建议关键字。在实验环境中,使用5个视频集合和一组MPEG-7描述符对当前描述符的有效性进行了评估。将相似性结果与人工评估的相似性进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信