Divide and Conquer: Recursive Likelihood Function Integration for Hidden Markov Models with Continuous Latent Variables

Gregor Reich
{"title":"Divide and Conquer: Recursive Likelihood Function Integration for Hidden Markov Models with Continuous Latent Variables","authors":"Gregor Reich","doi":"10.2139/ssrn.2794884","DOIUrl":null,"url":null,"abstract":"This paper develops a method to efficiently estimate hidden Markov models with continuous latent variables using maximum likelihood estimation. To evaluate the (marginal) likelihood function, I decompose the integral over the unobserved state variables into a series of lower dimensional integrals, and recursively approximate them using numerical quadrature and interpolation. I show that this procedure has very favorable numerical properties: First, the computational complexity grows linearly in time, which makes the integration over hundreds and thousands of periods well feasible. Second, I prove that the numerical error is accumulated sub-linearly over time; consequently, using highly efficient and fast converging numerical quadrature and interpolation methods for low and medium dimensions, such as Gaussian quadrature and Chebyshev polynomials, the numerical error can be well controlled even for very large numbers of periods. Lastly, I show that the numerical convergence rates of the quadrature and interpolation methods are preserved up to a factor of at least 0.5 under appropriate assumptions.I apply this method to the bus engine replacement model of Rust: first, I verify the algorithm’s ability to recover the parameters in an extensive Monte Carlo study with simulated datasets; second, I estimate the model using the original dataset.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2794884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper develops a method to efficiently estimate hidden Markov models with continuous latent variables using maximum likelihood estimation. To evaluate the (marginal) likelihood function, I decompose the integral over the unobserved state variables into a series of lower dimensional integrals, and recursively approximate them using numerical quadrature and interpolation. I show that this procedure has very favorable numerical properties: First, the computational complexity grows linearly in time, which makes the integration over hundreds and thousands of periods well feasible. Second, I prove that the numerical error is accumulated sub-linearly over time; consequently, using highly efficient and fast converging numerical quadrature and interpolation methods for low and medium dimensions, such as Gaussian quadrature and Chebyshev polynomials, the numerical error can be well controlled even for very large numbers of periods. Lastly, I show that the numerical convergence rates of the quadrature and interpolation methods are preserved up to a factor of at least 0.5 under appropriate assumptions.I apply this method to the bus engine replacement model of Rust: first, I verify the algorithm’s ability to recover the parameters in an extensive Monte Carlo study with simulated datasets; second, I estimate the model using the original dataset.
分而治之:具有连续潜变量的隐马尔可夫模型的递归似然函数积分
本文提出了一种利用极大似然估计对具有连续潜变量的隐马尔可夫模型进行有效估计的方法。为了评估(边际)似然函数,我将未观察到的状态变量上的积分分解为一系列低维积分,并使用数值正交和插值递归地逼近它们。我证明了这个过程具有非常好的数值性质:首先,计算复杂度随时间线性增长,这使得在数百和数千个周期内的积分是可行的。其次,我证明了数值误差是随时间亚线性累积的;因此,使用高效和快速收敛的低、中维数值正交和插值方法,如高斯正交和切比雪夫多项式,即使在非常大的周期内,数值误差也可以得到很好的控制。最后,我证明了在适当的假设下,正交和插值方法的数值收敛率至少保持在0.5的因子。我将这种方法应用于Rust的公共汽车发动机更换模型:首先,我用模拟数据集验证了算法在广泛的蒙特卡罗研究中恢复参数的能力;其次,我使用原始数据集估计模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信