A novel fitting algorithm based on Bacterial Swarm Optimizer for stochastic data

P. Wu, M. S. Li, T. Ji, Q. Wu, X. Shang
{"title":"A novel fitting algorithm based on Bacterial Swarm Optimizer for stochastic data","authors":"P. Wu, M. S. Li, T. Ji, Q. Wu, X. Shang","doi":"10.1109/CEEC.2013.6659450","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel stochastic algorithm, which aims to describe the random distributions of experimentally acquired data. Generally, such data can be satisfactorily modeled through the use of a Gaussian distribution. However, it is not always the case, instances can arise in which the distributions of measured data are not strictly Gaussian in their nature. The present work adopts Bacterial Swarm Optimizer (BSO), which has been inspired from bacterial foraging behavior and quorum sensing, to optimize the Probability Density Function (PDF) for describing a particle identification spectrum constructed from data collected in an experiment undertaken at Gesellschaft fur Schwerionenforschung (GSI), Darmstadt, Germany. Our studies indicates that the PDF proposed in the present paper is more accurate than that of several convention methods.","PeriodicalId":309053,"journal":{"name":"2013 5th Computer Science and Electronic Engineering Conference (CEEC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th Computer Science and Electronic Engineering Conference (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2013.6659450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel stochastic algorithm, which aims to describe the random distributions of experimentally acquired data. Generally, such data can be satisfactorily modeled through the use of a Gaussian distribution. However, it is not always the case, instances can arise in which the distributions of measured data are not strictly Gaussian in their nature. The present work adopts Bacterial Swarm Optimizer (BSO), which has been inspired from bacterial foraging behavior and quorum sensing, to optimize the Probability Density Function (PDF) for describing a particle identification spectrum constructed from data collected in an experiment undertaken at Gesellschaft fur Schwerionenforschung (GSI), Darmstadt, Germany. Our studies indicates that the PDF proposed in the present paper is more accurate than that of several convention methods.
一种基于细菌群优化的随机数据拟合算法
本文提出了一种新的随机算法,旨在描述实验数据的随机分布。一般来说,这样的数据可以通过使用高斯分布令人满意地建模。然而,情况并非总是如此,测量数据的分布在本质上不是严格的高斯分布。本文采用细菌群优化器(BSO)对概率密度函数(PDF)进行了优化,该概率密度函数描述了一个粒子识别谱,该谱是根据德国达尔施塔特的Gesellschaft fur Schwerionenforschung (GSI)的实验数据构建的。我们的研究表明,本文提出的PDF比几种传统方法更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信